Featured Research

from universities, journals, and other organizations

Why swine flu virus is developing drug resistance

Date:
May 29, 2012
Source:
University of Bristol
Summary:
Computer chips of a type more commonly found in game consoles have been used by scientists to reveal how the flu virus resists anti-flu drugs such as Relenza and Tamiflu.

Computer chips of a type more commonly found in games consoles have been used by scientists at the University of Bristol to reveal how the flu virus resists anti-flu drugs such as Relenza and Tamiflu.

Professor Adrian Mulholland and Dr Christopher Woods from Bristol's School of Chemistry, together with colleagues in Thailand, used graphics processing units (GPUs) to simulate the molecular processes that take place when these drugs are used to treat the H1N1-2009 strain of influenza -- commonly known as 'swine flu'.

Their results, published May 29 in Biochemistry, provide new insight that could lead to the development of the next generation of antiviral treatments for flu.

H1N1-2009 is a new, highly adaptive virus derived from different gene segments of swine, avian, and human influenza. Within a few months of its appearance in early 2009, the H1N1-2009 strain caused the first flu pandemic of the 21st-century.

The antiviral drugs Relenza and Tamiflu, which target the neuraminidase (NA) enzyme, successfully treated the infection but widespread use of these drugs has led to a series of mutations in NA that reduce the drugs' effectiveness.

Clinical studies indicate that the double mutant of swine flu NA known as IRHY2 reduced the effectiveness of Relenza by 21 times and Tamiflu by 12,374 times -- that is, to the point where it has become an ineffective treatment.

To understand why the effectiveness of Relenza and Tamiflu is so seriously reduced by the occurrence of this mutation, the researchers performed long-timescale molecular dynamics (MD) simulations using GPUs.

Professor Mulholland said: "Our simulations showed that IRHY became resistant to Tamiflu due to the loss of key hydrogen bonds between the drug and residues in a part of the NA's structure known as the '150-loop'.

"This allowed NA to change from a closed to an open conformation. Tamiflu binds weakly with the open conformation due to poor electrostatic interactions between the drug and the active site, thus rendering the drug ineffective."

These findings suggest that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation.

The research was supported by the Engineering and Physical Sciences Research Council (EPSRC) through a Leadership Fellowship grant to Professor Mulholland and a software development grant to Professor Mulholland and Dr Woods.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christopher J. Woods, Maturos Malaisree, Naruwan Pattarapongdilok, Pornthep Sompornpisut, Supot Hannongbua, Adrian J. Mulholland. Long Time Scale GPU Dynamics Reveal the Mechanism of Drug Resistance of the Dual Mutant I223R/H275Y Neuraminidase from H1N1-2009 Influenza Virus. Biochemistry, 2012; 51 (21): 4364 DOI: 10.1021/bi300561n

Cite This Page:

University of Bristol. "Why swine flu virus is developing drug resistance." ScienceDaily. ScienceDaily, 29 May 2012. <www.sciencedaily.com/releases/2012/05/120529113633.htm>.
University of Bristol. (2012, May 29). Why swine flu virus is developing drug resistance. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/05/120529113633.htm
University of Bristol. "Why swine flu virus is developing drug resistance." ScienceDaily. www.sciencedaily.com/releases/2012/05/120529113633.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins