Featured Research

from universities, journals, and other organizations

Rhythmic firing of nerves involved in body’s movements

Date:
June 4, 2012
Source:
Washington University in St. Louis
Summary:
A new model for understanding how nerve cells in the brain control movement may help unlock the secrets of the motor cortex, a critical region that has long resisted scientists’ efforts to understand it, researchers report.

A new model for understanding how nerve cells in the brain control movement may help unlock the secrets of the motor cortex, a critical region that has long resisted scientists' efforts to understand it, researchers report June 3 in Nature.

Scientists at Washington University in St. Louis, Stanford University and Columbia University have shown that the motor cortex's effects on movement can be much more easily understood by looking at groups of motor cortex neurons instead of individual nerve cells. In the study, scientists identified rhythmic brain cell firing patterns coordinated across populations of neurons in the motor cortex. They linked those patterns to different kinds of shoulder muscle movements.

"Populations of neurons in the motor cortex oscillate in beautiful, coordinated ways," says co-first author John Cunningham, PhD, assistant professor of biomedical engineering at Washington University in St. Louis. "These patterns advance our understanding of the brain's control of movement, which is critical for understanding disorders that affect movement and for creating therapies that can restore movement."

Until now, scientists had based their studies of the motor cortex on decades-old insights into the workings of the visual cortex. In this region, orientation, brightness and other characteristics of objects in the visual field are encoded by individual nerve cells.

However, researchers could not detect a similar direct encoding of components of movement in individual nerve cells of the motor cortex.

"We just couldn't look at an arm movement and use that to reliably predict what individual neurons in the motor cortex had been doing to produce that movement," Cunningham says.

For the new study, conducted at Stanford University, scientists monitored motor cortex activity as primates reached for a target in different ways. They showed that the motor cortex generated patterns of rhythmic nerve cell impulses.

"Finding these brain rhythms surprised us a bit, as the reaches themselves were not rhythmic," says co-first author Mark Churchland, PhD, who was a postdoctoral researcher at Stanford at the time of the study and is now assistant professor of neuroscience at Columbia University. "In fact, they were decidedly arrhythmic, and yet underlying it all were these unmistakable patterns."

Cunningham compares the resulting picture of motor cortex function to an automobile engine. The engine's parts are difficult to understand in isolation but work toward a common goal, the generation of motion.

"If you saw a piston or a spark plug by itself, would you be able to explain how it makes a car move?" Cunningham asks. "Motor-cortex neurons are like that, too -- they are understandable only in the context of the whole."

Researchers are applying their new approach to understanding other puzzling aspects of motor cortex function.

"With this model, the seemingly complex system that is the motor cortex can now be at least partially understood in more straightforward terms," says senior author Krishna Shenoy, PhD, associate professor of electrical engineering at Stanford.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul Nuyujukian, Stephen I. Ryu, Krishna V. Shenoy. Neural population dynamics during reaching. Nature, 2012; DOI: 10.1038/nature11129

Cite This Page:

Washington University in St. Louis. "Rhythmic firing of nerves involved in body’s movements." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604092721.htm>.
Washington University in St. Louis. (2012, June 4). Rhythmic firing of nerves involved in body’s movements. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/06/120604092721.htm
Washington University in St. Louis. "Rhythmic firing of nerves involved in body’s movements." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604092721.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


A Different Drummer: Engineers Discover Neural Rhythms Drive Physical Movement

June 3, 2012 In a significant departure from earlier models, neural engineers and neuroscientists have developed a new model for the brain activity underlying arm movements. Motor neurons do not represent ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins