Featured Research

from universities, journals, and other organizations

Physicists close in on a rare particle-decay process: Underground experiment may unlock mysteries of the neutrino

Date:
June 4, 2012
Source:
California Institute of Technology
Summary:
In the biggest result of its kind in more than ten years, physicists have made the most sensitive measurements yet in a decades-long hunt for a hypothetical and rare process involving the radioactive decay of atomic nuclei. If discovered, the researchers say, this process could have profound implications for how scientists understand the fundamental laws of physics and help solve some of the universe's biggest mysteries.

This large copper cylindrical vessel is the Enriched Xenon Observatory 200's (EXO-200) time projection chamber, the part of the detector that contains the liquid xenon, isotopically enriched in xenon-136. The photo shows the chamber being inserted into the cryostat, which keeps the experiment at extremely low temperatures.
Credit: EXO

In the biggest result of its kind in more than ten years, physicists have made the most sensitive measurements yet in a decades-long hunt for a hypothetical and rare process involving the radioactive decay of atomic nuclei.

If discovered, the researchers say, this process could have profound implications for how scientists understand the fundamental laws of physics and help solve some of the universe's biggest mysteries -- including why there is more matter than antimatter and, therefore, why regular matter like planets, stars, and humans exists at all.

The experiment, the Enriched Xenon Observatory 200 (EXO-200), is an international collaboration that includes the California Institute of Technology (Caltech) and is led by Stanford University and the SLAC National Accelerator Laboratory, a U.S. Department of Energy (DOE) National Laboratory.

The EXO-200 experiment has placed the most stringent constraints yet on the nature of a so-called neutrinoless double beta decay. In doing so, physicists have narrowed down the range of possible masses for the neutrino, a tiny uncharged particle that rarely interacts with anything, passing right through rock, people, and entire planets as it zips along at nearly the speed of light.

The collaboration, consisting of 80 researchers, has submitted a paper describing the results to the journal Physical Review Letters.

In a normal double beta decay, which was first observed in 1986, two neutrons in an unstable atomic nucleus turn into two protons; two electrons and two antineutrinos -- the antimatter counterparts of neutrinos -- are emitted in the process.

But physicists have suggested that two neutrons could also decay into two protons by emitting two electrons without producing any antineutrinos. "People have been looking for this process for a very long time," says Petr Vogel, senior research associate in physics, emeritus, at Caltech and a member of the EXO-200 team. "It would be a very fundamental discovery if someone actually observes it."

A neutrino is inevitably produced in a single beta decay. Therefore, the two neutrinos that are produced in a neutrinoless double beta decay must somehow cancel each other out. For that to happen, physicists say, a neutrino must be its own antiparticle, allowing one of the two neutrinos to act as an antineutrino and annihilate the other neutrino. That a neutrino can be its own antiparticle is not predicted by the Standard Model -- the remarkably successful theory that describes how all elementary particles behave and interact.

If this neutrinoless process does indeed exist, physicists would be forced to revise the Standard Model.

The process also has implications for cosmology and the origin of matter, Vogel says. Right after the Big Bang, the universe had the same amount of matter as antimatter. Somehow, however, that balance was tipped, producing a slight surplus in matter that eventually led to the existence of all of the matter in the universe. The fact that the neutrino can be its own antiparticle might have played a key role in tipping that balance.

In the EXO-200 experiment, physicists monitor a copper cylinder filled with 200 kilograms of liquid xenon-136, an unstable isotope that, theoretically, can undergo neutrinoless double beta decay. Very sensitive detectors line the wall at both ends of the cylinder. To shield it from cosmic rays and other background radiation that may contaminate the signal of such a decay, the apparatus is buried deep underground in the DOE's Waste Isolation Pilot Plant in Carlsbad, New Mexico, where low-level radioactive waste is stored. The physicists then wait to see a signal.

The process, however, is very rare. In a normal double beta decay, half of a given sample would decay after 1021 years -- a half-life roughly 100 billion times longer than the time that has elapsed since the Big Bang.

One of the goals of the experiment is to measure the half-life of the neutrinoless process (if it is discovered). In these first results, no signal for a neutrinoless double beta decay was detected in almost seven months' of data -- and that non-detection allowed the researchers to rule out possible values for the half-life of the neutrinoless process. Indeed, seven months of finding nothing means that the half-life cannot be shorter than 1.6 × 1025 years, or a quadrillion times older than the age of the universe. With the value of the half-life pinned down, physicists can calculate the mass of a neutrino -- another longstanding mystery. The new data suggest that a neutrino cannot be more massive than about 0.140 to 0.380 electron volts (eV, a unit of mass commonly used in particle physics); an electron, by contrast, is about 500,000 eV, or about 9 × 10-31 kilograms.

More than ten years ago, the collaboration behind the Heidelberg-Moscow Double Beta Decay Experiment controversially claimed to have discovered neutrinoless double beta decay using germanium-76 isotopes. But now, the EXO-200 researchers say, their new data makes it highly unlikely that those earlier results were valid.

The EXO-200 experiment, which started taking data last year, will continue its quest for the next several years.

The EXO collaboration involves scientists from SLAC, Stanford, the University of Alabama, Universität Bern, Caltech, Carleton University, Colorado State University, University of Illinois Urbana-Champaign, Indiana University, UC Irvine, Institute for Theoretical and Experimental Physics (Moscow), Laurentian University, the University of Maryland, the University of Massachusetts-Amherst, the University of Seoul, and the Technische Universität München. This research was supported by the DOE and the National Science Foundation in the United States, the Natural Sciences and Engineering Research Council in Canada, the Swiss National Science Foundation, and the Russian Foundation for Basic Research. This research used resources of the National Energy Research Scientific Computing Center (NERSC).


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Marcus Woo. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Auger, D.J. Auty, P.S. Barbeau, E. Beauchamp, V. Belov, C. Benitez-Medina, M. Breidenbach, T. Brunner, A. Burenkov, B. Cleveland, S. Cook, T. Daniels, M. Danilov, C.G. Davis, S. Delaquis, R. deVoe, A. Dobi, M.J. Dolinski, A. Dolgolenko, M. Dunford, W. Fairbank Jr., J. Farine, W. Feldmeier, P. Fierlinger, D. Franco, G. Giroux, R. Gornea, K. Graham, G. Gratta, C. Hall, K. Hall, C. Hargrove, S. Herrin, M. Hughes, A. Johnson, T.N. Johnson, A. Karelin, L.J. Kaufman, A. Kuchenkov, K.S. Kumar, D.S. Leonard, F. Leonard, D. Mackay, R. MacLellan, M. Marino, B. Mong, M. Montero Diez, A.R. Mueller, R. Neilson, R. Nelson, A. Odian, I. Ostrovskiy, K. O'Sullivan, C. Ouellet, A. Piepke, A. Pocar, C.Y. Prescott, K. Pushkin, P.C. Rowson, J.J. Russell, A. Sabourov, D. Sinclair, S. Slutsky, V. Stekhanov, T. Tolba, D. Tosi, K. Twelker, P. Vogel, J.-L. Vuilleumier, A. Waite, T. Walton, M. Weber, U. Wichoski, J. Wodin, J.D Wright, L. Yang, Y.-R. Yen, and O.Ya. Zeldovich. Search for Neutrinoless Double-Beta Decay in 136Xe with EXO-200. Physical Review Letters, 2012 [link]

Cite This Page:

California Institute of Technology. "Physicists close in on a rare particle-decay process: Underground experiment may unlock mysteries of the neutrino." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604142728.htm>.
California Institute of Technology. (2012, June 4). Physicists close in on a rare particle-decay process: Underground experiment may unlock mysteries of the neutrino. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/06/120604142728.htm
California Institute of Technology. "Physicists close in on a rare particle-decay process: Underground experiment may unlock mysteries of the neutrino." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604142728.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Underground Search for Neutrino Properties Unveils First Results

June 4, 2012 — Scientists studying neutrinos have found with the highest degree of sensitivity yet that these mysterious particles behave like other elementary particles at the quantum level. The results shed light ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins