Featured Research

from universities, journals, and other organizations

Chiral asymmetry can emerge from maximal symmetry

Date:
June 5, 2012
Source:
Chalmers University of Technology
Summary:
Maximally symmetric systems of particles can spontaneously produce two different patterns, which are mirror images of each other, new research shows. The research group is working towards a mathematical design of self-assembling nanomaterials.

These two patterns are mirror images of each other. To see the difference between them, compare how a row with six triangles connects to one of the hexagonal shapes. A chiral pattern of this kind can occur despite the fact that all particles (dots) are the same type and acting with equal force in all directions.
Credit: Physical Review Letters: “Chiral Surfaces Self-Assembling in One-Component Systems with Isotropic Interactions”.

Researchers at Chalmers have shown that maximally symmetric systems of particles can spontaneously produce two different patterns, which are mirror images of each other. The results have been published in the journal Physical Review Letters -- one of four articles from the research group in the same journal within a short period of time. The research group is working towards a mathematical design of self-assembling nanomaterials.

Related Articles


The Chalmers researchers are working on so-called self-assembling systems. The aim is to calculate how to construct molecular building blocks which, when mixed together, self-assemble into advanced nanomaterials -- like pieces of a puzzle that completes itself.

An important property in many chemical and physical systems is something called chirality. Most larger molecules are chiral, which means they exist in two different versions that are mirror images of each other, like our left and right hands. The two versions often produce a completely different effect in, for example, the human body. One well known example of this is the drug thalidomide, where one chiral variation of the active molecule can cause birth defects.

Chirality normally occurs when different types of particle or atoms combine into complex molecules. Researchers at Chalmers have now, however, demonstrated something completely new in the field of physics: chirality can occur spontaneously, even in systems that comprise only a single type of basic, spherically symmetric particle. This means that it doesn't matter how the particles are rotated in relation to one another. The forces acting between the particles depend only on the distance between them.

"Chiral asymmetry can therefore occur spontaneously in a system where the basic condition is maximal symmetry," says Martin Nilsson Jacobi, head of the research group. "This is an important breakthrough in our attempt to develop self-assembling materials. It may also shed new light on the issue of why chirality is so prevalent in nature."

The basis for the discovery is a mathematical method developed by the research group. This method enables them to take any crystal and calculate exactly which forces are required between the particles to form this exact crystal. This is a new technique for designing self-assembling systems, and has also been published in Physical Review Letters.

The majority of researchers in the field use experiments and data simulations to cope with the enormous complexity represented by self-assembling systems. To design the building blocks that lead to a desired structure, the components are gradually altered to try and achieve the correct final result. Chalmers researchers, however, calculate the solution to the design problem in advance.

"We design the building blocks mathematically," says Martin Nilsson Jacobi. "So far, the forces between the particles produced using our methods are too complicated to be implemented in the lab, but we are working to simplify them in various ways."

The group is currently developing analytical methods to construct nanoparticles whose surfaces are covered by molecules in a set pattern. The molecules will enable the particles to combine in exactly the right way to form desired structures.

"Research into material manufacturing is currently focusing increasingly on self-assembling materials," says Martin Nilsson Jacobi. "One source of inspiration is living cells, where self-assembly and self-reparation take place all the time. Incredibly complex molecular machineries are assembled spontaneously, when atoms and molecules attach themselves to one another with different types of bindings."

Researchers across the world are now attempting to emulate these systems, which evolution has created and fine-tuned over millions of years. They can also create wholly new materials with exotic properties which do not occur in nature, so-called metamaterials. Examples are materials that do not propagate sound in certain frequency bands, or materials that do not expand when heated.


Story Source:

The above story is based on materials provided by Chalmers University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Edlund, O. Lindgren, M. Jacobi. Chiral Surfaces Self-Assembling in One-Component Systems with Isotropic Interactions. Physical Review Letters, 2012; 108 (16) DOI: 10.1103/PhysRevLett.108.165502

Cite This Page:

Chalmers University of Technology. "Chiral asymmetry can emerge from maximal symmetry." ScienceDaily. ScienceDaily, 5 June 2012. <www.sciencedaily.com/releases/2012/06/120605075203.htm>.
Chalmers University of Technology. (2012, June 5). Chiral asymmetry can emerge from maximal symmetry. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/06/120605075203.htm
Chalmers University of Technology. "Chiral asymmetry can emerge from maximal symmetry." ScienceDaily. www.sciencedaily.com/releases/2012/06/120605075203.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins