Featured Research

from universities, journals, and other organizations

Precise measurement of radiation damage on materials

Date:
June 5, 2012
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Researchers have for the first time simulated and quantified the early stages of radiation damage that will occur in a given material.

Model of the electronic wake (blue surfaces) generated by an energetic proton (red sphere) traveling in an aluminum crystal (yellow spheres). The resulting change in electronic density is responsible for modification of chemical bonds between the atoms and consequently for a change in their interactions.
Credit: Image courtesy of DOE/Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory researchers have for the first time simulated and quantified the early stages of radiation damage that will occur in a given material.

"A full understanding of the early stages of the radiation damage process provides knowledge and tools to manipulate them to our advantage," said Alfredo Correa, a Lawrence Fellow from Lawrence Livermore National Laboratory in the Quantum Simulations Group.

Nuclear radiation leads to highly energetic ions that can penetrate large distances within matter, often leading to the accumulation of damage sites as the ions pass through the material.

During this process, the energetic ions eventually slow down as energy is lost by friction with the materials' electrons. Like a speedboat moving through a calm body of water, the passage of fast ions creates a disturbance in the electron density in the shape of a wake.

Correa along with colleagues Alfredo Caro from Los Alamos National Laboratory, Jorge Kohanoff from the the UK and Emilio Artacho and Daniel Sαnchez-Portal from Spain, have directly simulated this quantum friction of the electrons in a real material for the very first time.

The team simulated the passage of a fast proton through crystalline aluminum. By accounting for the energy absorbed by the electrons and the magnitude of the impulse given to the aluminum atoms, the team was able to predict the rate at which the proton is stopped and the amount of momentum transferred. This is a precise atomistic simulation of the deposited energy and momentum, which is ultimately responsible for the damage that is produced in the material.

The new method opens up the possibility to predict the effect of radiation on a wide range of complex materials. The research not only applies to materials for nuclear applications, but also for materials related to the space industry, and new processing techniques for lasers and highly energetic ions. In biology and medicine, it also may contribute to understanding the effects of radiation on living tissues, both for damage and therapeutic processes.

In a broader sense, the new simulation capability represents the first step toward a unified method for the simultaneous simulation of electron and ion dynamics. The research is highlighted on the cover of the May 25 issue of Physical Review Letters.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alfredo A. Correa, Jorge Kohanoff, Emilio Artacho, Daniel Sαnchez-Portal, and Alfredo Caro. Nonadiabatic Forces in Ion-Solid Interactions: The Initial Stages of Radiation Damage. Physical Review Letters, May 25, 2012 [link]

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Precise measurement of radiation damage on materials." ScienceDaily. ScienceDaily, 5 June 2012. <www.sciencedaily.com/releases/2012/06/120605143421.htm>.
DOE/Lawrence Livermore National Laboratory. (2012, June 5). Precise measurement of radiation damage on materials. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/06/120605143421.htm
DOE/Lawrence Livermore National Laboratory. "Precise measurement of radiation damage on materials." ScienceDaily. www.sciencedaily.com/releases/2012/06/120605143421.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins