Featured Research

from universities, journals, and other organizations

Newly identified protein function protects cells during injury

Date:
June 7, 2012
Source:
Cincinnati Children's Hospital Medical Center
Summary:
Scientists have discovered a new function for a protein that protects cells during injury and could eventually translate into treatment for conditions ranging from cardiovascular disease to Alzheimer's. Researchers report that a type of protein called thrombospondin activates a protective pathway that prevents heart cell damage in mice undergoing simulated extreme hypertension, cardiac pressure overload and heart attack.

Scientists have discovered a new function for a protein that protects cells during injury and could eventually translate into treatment for conditions ranging from cardiovascular disease to Alzheimer's.

Related Articles


Researchers report online June 7 in the journal Cell that a type of protein called thrombospondin activates a protective pathway that prevents heart cell damage in mice undergoing simulated extreme hypertension, cardiac pressure overload and heart attack.

"Our results suggest that medically this protein could be targeted as a way to help people with many different disease states where various organs are under stress,'' said Jeffery Molkentin, PhD, lead investigator and a researcher at Cincinnati Children's Hospital Medical Center and the Howard Hughes Medical Institute. "Although more study is needed to determine how our findings might be applied clinically, a possible therapeutic strategy could include a drug or gene therapy that induces overexpression of the protein in tissues or organs undergoing injury."

Thrombospondin (Thbs) proteins are produced by the body in cells where tissues are being injured, reconfigured or remodeled, such as in chronic cardiac disease. They appear in part of the cell's internal machinery called the endoplasmic reticulum. There, Thbs triggers a stress response process to regulate production of other proteins and help correct or rid cells of proteins that misfold and lose their form and intended function. Misfolded proteins help drive tissue damage and organ dysfunction.

The researchers zeroed in on how one thrombospondin protein (Thbs4) activates cellular stress responses in mice bred to overexpress the protein in heart cells. They compared how the hearts of the Thbs4-positive mice responded to simulated stress and injury to mice not bred to overexpress cardiac-specific Thbs4.

Overexpression of Thbs4 had no effect on the animals prior to cardiac stress -- although during simulated hypertension and cardiac infarction the protein reduced injury and protected them from death. Mice not bred for Thbs4 overexpression were extremely sensitive to cardiac injury, according to Molkentin, a member of the Division of Molecular Cardiovascular Biology and Cincinnati Children's Heart Institute.

The researchers reported that overexpressed Thbs4 enhanced the ability of heart cells to secrete helpful proteins, resolve misfolded proteins and properly reconstruct extracellular matrix -- connective tissues that help give the heart functional form and structural integrity.

Critical to the stress response process was Thbs4 activating and regulating a transcription factor called Aft6alpha. Transcription factors help decode genetic instructions of other genes to control their expression. In the case of Aft6alpha in the heart, it helps mediate repair processes. When Aft6alpha is activated by Thbs4, the endoplasmic reticulum in cells expands and the production of chaperone molecules and other repair proteins is enhanced.

Mice bred not to overexpress cardiac Thbs4 did not exhibit activated Aft6alpha or robust repair processes following cardiac injury, leading to their poor outcomes.

Molkentin said the research team continues to examine the Thbs-dependent stress response pathway to better understand the involved processes. This includes seeing how the pathway affects laboratory models of neurodegenerative diseases like Parkinson's, Alzheimer's and amyotrophic lateral sclerosis

Funding support for the study came from the National Institutes of Health and Howard Hughes Medical Institute.

Collaborating on the study -- along with first author Jeffrey M. Lynch, a member of the Molkentin lab -- were researchers from the Department of Pediatrics, Cincinnati Children's and the University of Cincinnati (UC), the Department of Surgery at UC and researchers from Kyoto University in Japan, Columbia University in New York and Beth Israel Deaconess Hospital and Harvard Medical School, Boston.


Story Source:

The above story is based on materials provided by Cincinnati Children's Hospital Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. JeffreyM. Lynch, Marjorie Maillet, Davy Vanhoutte, Aryn Schloemer, MichelleA. Sargent, N.Scott Blair, KaariA. Lynch, Tetsuya Okada, BruceJ. Aronow, Hanna Osinska, Ron Prywes, JohnN. Lorenz, Kazutoshi Mori, Jack Lawler, Jeffrey Robbins, JefferyD. Molkentin. A Thrombospondin-Dependent Pathway fora Protective ER Stress Response. Cell, 2012; 149 (6): 1257 DOI: 10.1016/j.cell.2012.03.050

Cite This Page:

Cincinnati Children's Hospital Medical Center. "Newly identified protein function protects cells during injury." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607141640.htm>.
Cincinnati Children's Hospital Medical Center. (2012, June 7). Newly identified protein function protects cells during injury. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2012/06/120607141640.htm
Cincinnati Children's Hospital Medical Center. "Newly identified protein function protects cells during injury." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607141640.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins