Featured Research

from universities, journals, and other organizations

Reflected infrared light unveils never-before-seen details of Renaissance paintings

Date:
June 18, 2012
Source:
Optical Society of America
Summary:
When restoring damaged and faded works of art, artists often employ lasers and other sophisticated imaging techniques to study intricate details, analyze pigments, and search for subtle defects not visible to the naked eye. To refine what can be seen during the restoration process even further, a team of Italian researchers has developed a new imaging tool that can capture features not otherwise detectable with the naked eye or current imaging techniques.

Part of the fresco by the Zavattaris in the Theodelinda’s Chapel, Duomo of Monza (Italy). The artworks, executed between 1440 and 1446 are extremely rich and complex, featuring different fresco techniques, gold and silver decorations and reliefs. Color photography (a), and imaging in the NIR (b), compared to the TQR image (c).
Credit: Optics Express

When restoring damaged and faded works of art, artists often employ lasers and other sophisticated imaging techniques to study intricate details, analyze pigments, and search for subtle defects not visible to the naked eye. To refine what can be seen during the restoration process even further, a team of Italian researchers has developed a new imaging tool that can capture features not otherwise detectable with the naked eye or current imaging techniques.

The system, known as Thermal Quasi-Reflectography (TQR), is able to create revealing images using reflected light from the mid-infrared part of the spectrum (3-5 micrometers in wavelength). Researchers from the University of L'Aquila, the University of Verona, and Italy's National Institute of Optics in Florence successfully demonstrated the TQR system on two famous works of art: the Zavattari frescos in the Chapel of Theodelinda and "The Resurrection" by the Italian Renaissance artist Piero della Francesca. The researchers detail their work in a paper published June 18 in the Optical Society's (OSA) open-access journal Optics Express.

Thermography, the traditional infrared imaging technique in this part of the spectrum (greater than 3 micrometers) detects subtle temperature differences due to the pigmentation on the surface of paintings. These thermal maps can be used during art restoration to reveal internal defects that are not evident in visible light.

In contrast, the TQR imaging system uses a very different tactic and doesn't detect heat emitted from paintings at all; in fact it tries to minimize it: The TQR system shines a faint mid-infrared light source onto the surface of the painting and records the light that is reflected back to a camera.

"This is, to the best of our knowledge, the first time that this technique has been applied on artworks," said Dario Ambrosini of the University of L'Aquila in Italy, one of the paper's authors. "This novel method represents a powerful yet safe tool for artwork diagnostics." All objects emit some infrared radiation. Depending on their temperature, certain materials shine more brightly in one wavelength than in others. At normal room temperature (20 C or 68 F), paintings typically emit more energy in the longer infrared wavelengths (42 percent) than they do in the mid-infrared (1.1 percent).

To take advantage of this weak mid-IR emission, the researchers applied the basic tools of thermography and ran them in reverse. Since the painting would not normally shine brightly in the mid-IR, the researchers used under-powered halogen lamps as very simple yet effective sources of mid-IR radiation. To measure only the reflected light, special care had to be taken to prevent the lamp from heating the surface of the painting and to exclude all other potential sources of mid-IR radiation.

The researchers developed the TQR system to find a thermal imaging tool capable of better differentiating materials in a painted surface. The mid-infrared has advantages over other wavelengths in this regard. It also has better contrast and produces sharper images than studies in the far-infrared, and can detect features not seen in the near-infrared (NIR) with wavelength less than approximately 2 micrometers.

In its first test on a small section of the Zavattari frescos in the Chapel of Theodelinda, the TQR system revealed details that were missed by earlier optical and near-infrared studies. "Our system easily identified old restorations in which missed gold decorations were simply repainted," said lead author Claudia Daffara of the University of Verona. "The TQR system was also much better at visualizing armor on some of the subjects in the fresco."

To further evaluate the potential, the TQR system also studied a painting known as "The Resurrection" by Piero della Francesca. The TQR system identified interesting features, such as highly reflective retouches from previous restorations, all while operating during normal museum hours without interruption. The most surprising feature was an area around a soldier's sword that was painted by using two different fresco techniques. This subtle distinction was not detected by NIR photography.

"For mural paintings the use of the mid-infrared regions reveals crucial details," said Daffara. "This makes TQR a promising tool for the investigation of these artworks."

The researchers are currently conducting tests to determine if the TQR system can also provide infrared spectra of the surface of paintings, which may be able to identify the pigments used. "Determining the chemical makeup of the pigments is important in determining how best to protect and restore the artwork," said Ambrosini. And they note that TQR may have applications beyond art preservation. "In principle, it should work whenever we desire to differentiate surface materials," said Ambrosini.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claudia Daffara, Dario Ambrosini, Luca Pezzati, and Domenica Paoletti. Thermal quasi-reflectography: a new imaging tool in art conservation. Optics Express, 2012 [link]

Cite This Page:

Optical Society of America. "Reflected infrared light unveils never-before-seen details of Renaissance paintings." ScienceDaily. ScienceDaily, 18 June 2012. <www.sciencedaily.com/releases/2012/06/120618111828.htm>.
Optical Society of America. (2012, June 18). Reflected infrared light unveils never-before-seen details of Renaissance paintings. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2012/06/120618111828.htm
Optical Society of America. "Reflected infrared light unveils never-before-seen details of Renaissance paintings." ScienceDaily. www.sciencedaily.com/releases/2012/06/120618111828.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins