Featured Research

from universities, journals, and other organizations

Paddle vs. propeller: Which competitive swimming stroke is superior?

Date:
June 19, 2012
Source:
Johns Hopkins University
Summary:
In time for the US Olympic Trials, engineers settle the argument over which swim stroke technique -- deep catch or sculling -- is faster.

A fluid dynamics expert has found that a deep catch stroke, resembling a paddle, has the edge over sculling, the bent-arm, propeller-inspired motion.
Credit: Image courtesy of Johns Hopkins University

Two swimming strokes -- one that pulls through the water like a boat paddle and another that whirls to the side like a propeller -- are commonly used by athletes training for the Olympic Games. But elite swimmers and their coaches have long argued over which arm motion is more likely to propel an aquatic star toward a medal.

A university research study has picked a winner. A team supervised by a Johns Hopkins fluid dynamics expert has found that the deep catch stroke, resembling a paddle, has the edge over sculling, the bent-arm, propeller-inspired motion.

"This is a result that is simple but sweet, which is something we usually struggle to arrive at in research," said Rajat Mittal, a mechanical engineering professor in Johns Hopkins' Whiting School of Engineering. "The deep catch stroke is more efficient and effective than the sculling stroke."

To obtain this result, Mittal's team started with high-precision laser scans and underwater videos of elite swimmers. The researchers then used animation software to bend and otherwise change the shape of the static arm in such a way as to match the video sequence. This software allowed the researcher to insert a "joint" into the arm so that the limb could be moved in a realistic manner. The team then ran computer simulations to study the flow of fluid around the arm and the forces that acted upon the limb. Each simulation involved about 4 million degrees of freedom and required thousands of hours of computer processing time.

The findings concerning the deep catch and sculling strokes were featured in the doctoral thesis of Alfred von Loebbecke, who studied under Mittal, and in a report by Loebbecke and Mittal that has been accepted for publication in the Journal of Biomechanical Engineering.

Mittal, a recreational swimmer, joined the Johns Hopkins faculty in 2009. His research into motion through water began almost a decade ago when, while based at George Washington University, he was awarded a U.S. Navy grant to figure out how fish use their fins to swim so well. To tackle this task, Mittal's team developed software and computer models to study the movement of marine animals.

Mittal later contacted USA Swimming to see if he might use these high-tech tools to crack the secrets of elite swimmers. Russell Mark, the biomechanics coordinator of USA Swimming, was intrigued, and he provided Mittal's team with underwater videos of top swimmers and startup funding. With this support, Mittal and Loebbecke collaborated on studies of the "dolphin kick" used by many Olympic-caliber swimmers, including medalist Michael Phelps.

After completing that study for USA Swimming, Mittal's team turned its attention to the debate among top coaches about the merits of deep catch and sculling strokes.

In the 1960s, the sculling stroke gained popularity thanks to the late James "Doc" Counsilman, then the head men's swimming coach at Indiana University. Counsilman, highly regarded for his science-based approach to swimming stroke mechanics, also was head coach of the U.S. men's swim team that won a combined 21 gold medals in the 1964 and 1976 Olympic Games. Counsilman encouraged his swimmers to use the propeller-like sculling stroke, in which the elbow is raised to a higher position and the arm moves inward and outward in an S-shaped, propeller-like pattern.

While supervising the current study, Johns Hopkins' Mittal considered Counsilman's reasoning. "A propeller, when it rotates, is producing a lift force, and it is that lift force that pushes a boat forward," Mittal said. "Counsilman believed that to travel efficiently in a fluid, a swimmer should be using lift forces."

This contradicted the advice given by many swimming instructors. "In the past, the analogy for a swimming stroke was that it was like a paddle in a boat: put the paddle in the water, push it back as hard as possible," Mittal said. "This is called drag-based propulsion. You're actually dragging the water back, and the water drags you forward."

Counsilman insisted that the lift force -- generated by that propeller-like movement -- was a more effective way of producing thrust than drag force. But Mittal and Loebbecke's research suggests that the fluid dynamics of this stroke are more complicated than the coach had imagined.

"Sculling, in my view, is a swimming stroke that is based on an incomplete understanding of fluid mechanics," Mittal said. "We found that Doc Counsilman was not correct overall about the sculling, but in some ways he was more correct than he would have ever thought. We did find that lift is indeed a major component in thrust production for both strokes, and that certainly indicates that the arm does not behave simply like a paddle. However, the simulations also indicate that exaggerated sculling motions, which are designed to enhance and exploit lift, actually reduce both the lift and drag contributions to thrust. So, lift is in fact important, but not in the way envisioned by these early coaches who were trying to bring fluid mechanics into swimming."

Mittal has shared his findings with USA Swimming. He also pointed out that many top swimmers use variations of the classic deep catch and sculling strokes.

Outside of competitive swimming, Mittal's findings could be useful in designing exoskeleton suits that the U.S. Navy is seeking to help elite military forces swim more quickly and efficiently.

At the same time, Mittal said, the research could have more down-to-earth applications by steering recreational swimmers toward the most effective strokes. "People sometimes stop swimming because they feel they are not doing it well enough," he said. "If this research can help recreational swimmers swim more effectively and feel better about their swimming at an early stage, I think that could have an impact on health and fitness."


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alfred von Loebbecke, Rajat Mittal. Comparative Analysis of Thrust Production for Distinct Arm-Pull Styles in Competitive Swimming. Journal of Biomechanical Engineering, 2012

Cite This Page:

Johns Hopkins University. "Paddle vs. propeller: Which competitive swimming stroke is superior?." ScienceDaily. ScienceDaily, 19 June 2012. <www.sciencedaily.com/releases/2012/06/120619230230.htm>.
Johns Hopkins University. (2012, June 19). Paddle vs. propeller: Which competitive swimming stroke is superior?. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/06/120619230230.htm
Johns Hopkins University. "Paddle vs. propeller: Which competitive swimming stroke is superior?." ScienceDaily. www.sciencedaily.com/releases/2012/06/120619230230.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins