Featured Research

from universities, journals, and other organizations

How humans predict other's decisions

Date:
June 20, 2012
Source:
RIKEN
Summary:
Researchers have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the two signals, each located in distinct prefrontal circuits, strike a balance between expected and observed rewards and choices, enabling humans to predict the actions of people with different values than their own.

Figure one shows the neural activity for the simulation of another person: Reward Signal (red) and Action Signal (green). The action signal shown in this figure (green) is in the dorsomedial prefrontal cortex. The activity of reward signal (red) largely overlaps with the activity of the signal for the self-valuation (blue) in the ventromedial prefrontal cortex.
Credit: RIKEN

Researchers at the RIKEN Brain Science Institute (BSI) in Japan have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the two signals, each located in distinct prefrontal circuits, strike a balance between expected and observed rewards and choices, enabling humans to predict the actions of people with different values than their own.

Related Articles


Every day, humans are faced with situations in which they must predict what decisions other people will make. These predictions are essential to the social interactions that make up our personal and professional lives. The neural mechanism underlying these predictions, however, by which humans learn to understand the values of others and use this information to predict their decision-making behavior, has long remained a mystery.

Researchers at the RIKEN Brain Science Institute (BSI) in Japan have now shed light on this mystery with a paper to appear in the June 21st issue of Neuron. The researchers describe for the first time the process governing how humans learn to predict the decisions of another person using mental simulation of their mind.

Learning another person's values and mental processes is often assumed to require simulation of the other's mind: using one's own familiar mental processes to simulate unfamiliar processes in the mind of the other. While simple and intuitive, this explanation is hard to prove due to the difficulty in disentangling one's own brain signals from those of the simulated other.

Research scientists Shinsuke Suzuki and Hiroyuki Nakahara, a Principal Investigator of the Laboratory for Integrated Theoretical Neuroscience at RIKEN BSI, together with their collaborators, set out to disentangle these signals using functional Magnetic Resonance Imaging (fMRI) on humans. First, they studied the behavior of subjects as they played a game by making predictions about the other's behavior based on the knowledge of others and their decisions. Then they generated a computer model of the simulation process to examine the brain signals underlying the prediction of the other's behavior.

The authors found that humans simulate the decisions of other people using two brain signals encoded in the prefrontal cortex, an area responsible for higher cognition. One signal involves the estimated value of the reward to the other person, and is called the reward signal, referring to the difference between the other's values, simulated in one's mind, and the reward benefit that the other actually received. The other signal is called the action signal, relating to the other's expected action predicted by the simulation process in one's mind, and what the other person actually did, which may or may not be different. They found that the reward signal is processed in a part of the brain called the ventromedial prefrontal cortex. The action signal, on the other hand, was found in a separate brain area called the dorsomedial prefrontal cortex.

"Every day, we interact with a variety of other individuals," Suzuki said. "Some may share similar values with us and for those interactions simulation using the reward signal alone may suffice. However, other people with different values may be quite different and then the action signal may become quite important."

Nakahara believes that their approach, using mathematical models based on human behavior with brain imaging, will be useful to answer a wide range of questions about the social functions employed by the brain. "Perhaps we may one day better understand how and why humans have the ability to predict others' behavior, even those with different characteristics. Ultimately, this knowledge could help improving political, educational, and social systems in human societies."


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shinsuke Suzuki, Norihiro Harasawa, Kenichi Ueno, JustinL. Gardner, Noritaka Ichinohe, Masahiko Haruno, Kang Cheng, Hiroyuki Nakahara. Learning to Simulate Others' Decisions. Neuron, 2012; 74 (6): 1125 DOI: 10.1016/j.neuron.2012.04.030

Cite This Page:

RIKEN. "How humans predict other's decisions." ScienceDaily. ScienceDaily, 20 June 2012. <www.sciencedaily.com/releases/2012/06/120620133143.htm>.
RIKEN. (2012, June 20). How humans predict other's decisions. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2012/06/120620133143.htm
RIKEN. "How humans predict other's decisions." ScienceDaily. www.sciencedaily.com/releases/2012/06/120620133143.htm (accessed November 1, 2014).

Share This



More Mind & Brain News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alzheimer’s Hope

Alzheimer’s Hope

Ivanhoe (Oct. 31, 2014) A new drug, BCI-838 offers new hope to halt and possibly reverse the damage of Alzheimer’s disease. Video provided by Ivanhoe
Powered by NewsLook.com
Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins