Featured Research

from universities, journals, and other organizations

Injecting life-saving oxygen into a vein

Date:
June 27, 2012
Source:
Children's Hospital Boston
Summary:
Patients unable to breathe because of acute lung failure or an obstructed airway need another way to get oxygen to their blood -- and fast -- to avoid cardiac arrest and brain injury. Medical researchers have designed tiny, gas-filled microparticles that can be injected directly into the bloodstream to quickly oxygenate the blood.

Patients unable to breathe because of acute lung failure or an obstructed airway need another way to get oxygen to their blood -- and fast -- to avoid cardiac arrest and brain injury. A team led by researchers at Boston Children's Hospital has designed tiny, gas-filled microparticles that can be injected directly into the bloodstream to quickly oxygenate the blood.

Related Articles


The microparticles consist of a single layer of lipids (fatty molecules) that surround a tiny pocket of oxygen gas, and are delivered in a liquid solution. In a cover article in the June 27 issue of Science Translational Medicine, John Kheir, MD, of the Department of Cardiology at Boston Children's Hospital, and colleagues report that an infusion of these microparticles into animals with low blood oxygen levels restored blood oxygen saturation to near-normal levels, within seconds.

When the trachea was completely blocked -- a more dangerous "real world" scenario -- the infusion kept the animals alive for 15 minutes without a single breath, and reduced the incidence of cardiac arrest and organ injury.

The microparticle solutions are portable and could stabilize patients in emergency situations, buying time for paramedics, emergency clinicians or intensive care clinicians to more safely place a breathing tube or perform other life-saving therapies, says Kheir.

"This is a short-term oxygen substitute -- a way to safely inject oxygen gas to support patients during a critical few minutes," he says. "Eventually, this could be stored in syringes on every code cart in a hospital, ambulance or transport helicopter to help stabilize patients who are having difficulty breathing."

The microparticles would likely only be administered for a short time, between 15 and 30 minutes, because they are carried in fluid that would overload the blood if used for longer periods, Kheir says.

Kheir also notes that the particles are different from blood substitutes, which carry oxygen but are not useful when the lungs are unable to oxygenate them. Instead, the microparticles are designed for situations in which the lungs are completely incapacitated.

Kheir began investigating the idea of injectable oxygen in 2006, after caring for a little girl who sustained a severe brain injury resulting from a severe pneumonia that caused bleeding into her lungs and severely low oxygen levels. Despite the team's best efforts, she died before they could place her on a heart-lung machine. Frustrated by this, Kheir formed a team to search for another way to deliver oxygen.

"Some of the most convincing experiments were the early ones," he says. "We drew each other's blood, mixed it in a test tube with the microparticles, and watched blue blood turn immediately red, right before our eyes."

Over the years, Kheir and his team have tested various concentrations and sizes of the microparticles to optimize their effectiveness and to make them safe for injection. "The effort was truly multidisciplinary," says Kheir. "It took chemical engineers, particle scientists and medical doctors to get the mix just right."

In the studies reported in the paper, they used a device called a sonicator, which uses high-intensity sound waves to mix the oxygen and lipids together. The process traps oxygen gas inside particles averaging 2 to 4 micrometers in size (not visible without a microscope). The resulting solution, with oxygen gas making up 70 percent of the volume, mixed efficiently with human blood.

"One of the keys to the success of the project was the ability to administer a concentrated amount of oxygen gas in a small amount of liquid," Kheir says. "The suspension carries three to four times the oxygen content of our own red blood cells."

Intravenous administration of oxygen gas was tried in the early 1900s, but these attempts failed to oxygenate the blood and often caused dangerous gas embolisms.

"We have engineered around this problem by packaging the gas into small, deformable particles," Kheir explains. "They dramatically increase the surface area for gas exchange and are able to squeeze through capillaries where free gas would get stuck."

The study was funded by three awards from the Technology Development Fund at Boston Children's Hospital Boston and a U.S. Department of Defense Basic Research Award to Kheir.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Journal Reference:

  1. John N. Kheir, Laurie A. Scharp, Mark A. Borden, Edward J. Swanson, Andrew Loxley, James H. Reese, Katherine J. Black, Luis A. Velazquez, Lindsay M. Thomson, Brian K. Walsh, Kathryn E. Mullen, Dionne A. Graham, Michael W. Lawlor, Carlo Brugnara, David C. Bell, and Francis X. McGowan, Jr. Oxygen Gas–Filled Microparticles Provide Intravenous Oxygen Delivery. Science Translational Medicine, 27 June 2012 DOI: 10.1126/scitranslmed.3003679

Cite This Page:

Children's Hospital Boston. "Injecting life-saving oxygen into a vein." ScienceDaily. ScienceDaily, 27 June 2012. <www.sciencedaily.com/releases/2012/06/120627142512.htm>.
Children's Hospital Boston. (2012, June 27). Injecting life-saving oxygen into a vein. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/06/120627142512.htm
Children's Hospital Boston. "Injecting life-saving oxygen into a vein." ScienceDaily. www.sciencedaily.com/releases/2012/06/120627142512.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Feeling Young Might Mean A Longer Life Span

Feeling Young Might Mean A Longer Life Span

Newsy (Dec. 16, 2014) A study published in JAMA shows that people who feel younger than their chronological age might actually live longer than those who feel old. Video provided by Newsy
Powered by NewsLook.com
2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

Newsy (Dec. 16, 2014) Researchers found the bacteria Klebsiella pneumoniae Carbapenemase in the water where the 2016 Olympics is supposed to take place. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins