Featured Research

from universities, journals, and other organizations

Acoustic tweezers capture and manipulate tiny creatures with ultrasound

Date:
June 28, 2012
Source:
Penn State Materials Research Institute
Summary:
Bioengineers and biochemists are using a miniaturized ultrasound device to capture and manipulate biological materials, such as the tiny roundworm, C. elegans.

A miniaturized ultrasonic device capable of capturing and moving single cells and tiny living creatures is compared to a U.S. dime.
Credit: Photo Credit: Xiaoyun Ding, Stephen J. Benkovic, and Tony Jun Huang - Penn State

A team of bioengineers and biochemists from Penn State University has demonstrated a device about the size of a dime that is capable of manipulating objects, including living materials such as blood cells and entire small organisms, using sound waves.

Their research is published online this week in the Proceedings of the National Academy of Sciences (PNAS).

The device, called acoustic tweezers, is the first technology capable of touchlessly trapping and manipulating Caenorhabditis elegans (C. elegans), a one millimeter long roundworm that is an important model system for studying diseases and development in humans. Acoustic tweezers are also capable of precisely manipulating cellular-scale objects that are essential to many areas of fundamental biomedical research.

Acoustic tweezers use ultrasound, the same noninvasive technology doctors use to capture images of the fetus in the womb. The device is based on a piezoelectric material that produces mechanical motion when an electrical current is applied. The vibrations pass through transducers attached to the piezoelectric substrate where they are converted into standing surface acoustic waves (SAWs). The SAWs create pressure fields in the liquid medium that hold the specimen. The simple electronics in the device can tune the SAWs to precisely and noninvasively hold and move the specimen or inorganic object.

"We believe the device can be easily manufactured at a cost far lower than say, optical tweezers, which use lasers to manipulate single particles," says Penn State associate professor of bioengineering Tony Jun Huang, whose group pioneered acoustic tweezers. "Optical tweezers require power densities 10,000,000 times greater than our acoustic tweezers, and the lasers can heat up and damage the cells, unlike ultrasound."

For many biological systems, acoustic tweezers will provide an excellent tool to mimic the conditions inside the body where cells are subject to waves of pressure and pulses of chemicals. According to Stephen Benkovic, Evan Pugh professor of chemistry and holder of the Eberly family chair in chemistry at Penn State, whose group contributed to the paper, "Acoustic tweezers will be used to position cells for interrogation by pulses of drug-like molecules to test as well as to exert mechanical forces on the cell wall. The cells will contain bio-chemical markers, so we can observe the effect of drug pulses or pressure on the cell's biochemistry."

Acoustic tweezers are very versatile, says Huang. "We can manipulate a single cell or we can manipulate tens of thousands of cells at the same time." Currently, the size of objects that can be moved with acoustic tweezers ranges from micrometers to millimeters, although with higher frequencies, it should be possible to move objects in the nanoscale regime, they believe. Further work will include modifying the device to accommodate more fundamental biomedical studies with the Benkovic group. Ultimately, the patent pending technology could lead to compact, noninvasive, and inexpensive point-of-care applications, such as blood cell and cancer cell sorting and diagnostics. For now, the ability to trap and manipulate a living C. elegans for study is proof of their device's potential utility.

Contributing to the PNAS paper, "On-chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves," are Xiaoyun Ding, Sz-Chin Steven Lin, Brian Kirby, Hongjun Yue, Sixing Li, Jinjie Shi, Stephen J. Benkovic, and Tony Jun Huang. Funding for their research was provided by the National Science Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Penn State Materials Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, I.-K. Chiang, J. Shi, S. J. Benkovic, T. J. Huang. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1209288109

Cite This Page:

Penn State Materials Research Institute. "Acoustic tweezers capture and manipulate tiny creatures with ultrasound." ScienceDaily. ScienceDaily, 28 June 2012. <www.sciencedaily.com/releases/2012/06/120628145508.htm>.
Penn State Materials Research Institute. (2012, June 28). Acoustic tweezers capture and manipulate tiny creatures with ultrasound. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/06/120628145508.htm
Penn State Materials Research Institute. "Acoustic tweezers capture and manipulate tiny creatures with ultrasound." ScienceDaily. www.sciencedaily.com/releases/2012/06/120628145508.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins