Featured Research

from universities, journals, and other organizations

Photosynthesis re-wired: Chemists use nanowires to power photosynthesis-like process

Date:
June 28, 2012
Source:
Boston College
Summary:
Chemists have developed a process that closely resembles photosynthesis and proved capable of synthesizing compounds found in the pain-killers ibuprofen and naproxen.

Harnessing the power of the sun has inspired scientists and engineers to look for ways to turn sunlight into clean energy to heat houses, fuel factories and power devices. While a majority of this research focuses on energy production, some researchers are looking at the potential uses of these novel solar technologies in other areas.
Credit: Taiga / Fotolia

Harnessing the power of the sun has inspired scientists and engineers to look for ways to turn sunlight into clean energy to heat houses, fuel factories and power devices. While a majority of this research focuses on energy production, some researchers are looking at the potential uses of these novel solar technologies in other areas.

Boston College Assistant Professor of Chemistry Dunwei Wang's work with silicon nanowires and his related construct, Nanonets, has shown these stable, tiny wire-like structures can be used in processes ranging from energy collection to hydrogen-generating water-splitting.

Teaming up with fellow Boston College Assistant Professor of Chemistry Kian L. Tan, the researchers have taken aim at a role for nanowires in photosynthesis.

Their work has produced a process that closely resembles photosynthesis, employing silicon nanowires to collect light energy to power reactions capable of synthesizing the basic compounds of two popular pain-killing, anti-inflammatory drugs, they report in the current edition of Angewandte Chemie, the journal of the German Chemical Society.

The reaction sequence offers an approach that differs from earlier attempts to sequester carbon dioxide with sunlight and solves the vexing problem of carbon's low selectivity, which so far has limited earlier methods to the production of fuels. Tan and Wang report their process offers the selectivity required to produce complex organic intermediaries capable of developing pharmaceuticals and high-value chemicals.

The process succeeds in taming stubborn carbon, which structurally resists most efforts to harness it for a single chemical product. Typically, refined forms of carbon molecules must first be produced to produce the necessary results.

"If we can start to use carbon dioxide and light to power reactions in organic chemistry, there's a huge benefit to that. It allows you to bypass the middle man of fossil fuels by using light to drive the chemical reaction," said Tan. "The key is the interaction of two fields -- materials and synthetic chemistry. Separately, these fields may not have accomplished this on their own. But together, we combined our knowledge to make it work."

During photosynthesis, plants capture sunlight and use this solar energy and carbon dioxide to fuel chemical reactions.

Tan and Wang used silicon nanowires as a photocathode, exploiting the wire's efficient means of converting solar energy to electrical energy. Electrons released from the atoms in the nanowires are then transferred to organic molecules to trigger chemical reactions.

In this case, the researchers used aromatic ketones, which when struck by electrons become active and attack and bind carbon dioxide. Further steps produced an acid that allowed the team to create the precursors to ibuprofen and naproxen with high selectivity and high yield, the team reports.

Tan and Wang were joined in the research by Research Assistant Guangbi Yuan, PhD '12, graduate student Rui Liu, doctoral student Candice L. Joe, and former doctoral student Thomas E. Lightburn, PhD '11.

Tan said it is no accident that the process so closely resembles natural photosynthesis, as chemists are constantly drawing inspiration from nature in their work.

"Researchers in my field are always drawing inspiration from nature," said Tan. "You take the basic lessons and you try to do it in an artificial way. In this work, we're trying to learn lessons from nature, although we can't copy nature directly."


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Weigang Lu, Julian P. Sculley, Daqiang Yuan, Rajamani Krishna, Zhangwen Wei, Hong-Cai Zhou. Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas. Angewandte Chemie International Edition, 2012; DOI: 10.1002/anie.201202176

Cite This Page:

Boston College. "Photosynthesis re-wired: Chemists use nanowires to power photosynthesis-like process." ScienceDaily. ScienceDaily, 28 June 2012. <www.sciencedaily.com/releases/2012/06/120628145741.htm>.
Boston College. (2012, June 28). Photosynthesis re-wired: Chemists use nanowires to power photosynthesis-like process. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2012/06/120628145741.htm
Boston College. "Photosynthesis re-wired: Chemists use nanowires to power photosynthesis-like process." ScienceDaily. www.sciencedaily.com/releases/2012/06/120628145741.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins