Featured Research

from universities, journals, and other organizations

Helper T cells, not killer T cells, might be responsible for clearing hepatitis A infection

Date:
July 16, 2012
Source:
Nationwide Children's Hospital
Summary:
Helper cells traditionally thought to only assist killer white blood cells may be the frontline warriors when battling hepatitis A infection.

Helper cells traditionally thought to only assist killer white blood cells may be the frontline warriors when battling hepatitis A infection. These are the findings from a Nationwide Children's Hospital study appearing in a recent issue of the Journal of Experimental Medicine.

Hepatitis A is a highly contagious liver infection caused by the hepatitis A virus. Despite the availability of an effective vaccine, the virus infects millions of people worldwide each year and remains a global public health problem, especially in underdeveloped countries.

Unlike the hepatitis C virus, the hepatitis A virus does not establish a persistent infection. Yet, up to 20 percent of patients can relapse several weeks after virus growth and after symptoms have disappeared.

"Mechanisms of immunity that protect against relapse, and why they occasionally fail, are unknown," said the study's lead author Christopher M. Walker, PhD, director of the Center for Vaccines and Immunity at The Research Institute at Nationwide Children's Hospital.

Research has shown that white blood cells known as CD8+ killer T cells play a critical role in controlling hepatitis C and hepatitis B virus infections. These T cells act by killing infected liver cells, a process that damages the liver, but is necessary to effectively shut off production of new viruses.

A study published more than 20 years ago suggested that killer T cells also control hepatitis A virus infection in humans. However, Dr. Walker observed a very different pattern of immunity while studying acute hepatitis A virus infection in animals.

He found that the infection was controlled well before an effective killer T cell response was generated. Hepatitis A virus growth was instead controlled by CD4+ T helper cells, a different type of white blood cell that normally assists in the activation killer T cells but, is not thought to directly engage virus-infected cells. In the two infected animals infected with the hepatitis A virus, helper T cells secreted factors that suppressed virus growth without causing serious liver damage or inflammation that is an undesirable byproduct of a killer T cell response.

Moreover, the helper T cells responded to resurgence in hepatitis A virus growth after initial control of the infection, and remained strong until the virus was finally eliminated from the liver several months later. These findings suggested that CD8+ T cells are not necessarily required to control hepatitis A virus infection. Instead, it appears that CD4+ T cells have a more direct role in stopping replication of the hepatitis A virus by mechanisms that do not involve severe damage to the liver.

"This is quite an unusual discovery," said Dr. Walker, also a faculty member at The Ohio State University College of Medicine. "These findings document a previously unappreciated role for CD4+ T cells in resolving acute hepatitis A, and perhaps in surveillance against a relapse in virus growth and liver disease that sometimes occurs in those with weak immune systems, particularly the very young and old."

If CD4+ T cells are found to play a similar role in humans, they could serve as a new target for preventing relapse of hepatitis A virus infection. An inefficient helper T cell response might explain why some patients relapse after clearing the infection.

"If CD4+ T cells have an immune surveillance function, as suggested by our findings, patients at greatest risk of relapsing liver disease may benefit from a vaccine that would boost helper T cell activity until the virus is finally cleared from the liver," said Dr. Walker.


Story Source:

The above story is based on materials provided by Nationwide Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Zhou, B. Callendret, D. Xu, K. M. Brasky, Z. Feng, L. L. Hensley, J. Guedj, A. S. Perelson, S. M. Lemon, R. E. Lanford, C. M. Walker. Dominance of the CD4 T helper cell response during acute resolving hepatitis A virus infection. Journal of Experimental Medicine, 2012; DOI: 10.1084/jem.20111906

Cite This Page:

Nationwide Children's Hospital. "Helper T cells, not killer T cells, might be responsible for clearing hepatitis A infection." ScienceDaily. ScienceDaily, 16 July 2012. <www.sciencedaily.com/releases/2012/07/120716124354.htm>.
Nationwide Children's Hospital. (2012, July 16). Helper T cells, not killer T cells, might be responsible for clearing hepatitis A infection. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/07/120716124354.htm
Nationwide Children's Hospital. "Helper T cells, not killer T cells, might be responsible for clearing hepatitis A infection." ScienceDaily. www.sciencedaily.com/releases/2012/07/120716124354.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins