Featured Research

from universities, journals, and other organizations

Researchers almost double light efficiency in LC projectors

Date:
July 16, 2012
Source:
North Carolina State University
Summary:
Researchers have developed new technology to convert unpolarized light into polarized light, which makes projectors that use liquid crystal technology almost twice as energy efficient. The new technology has resulted in smaller, lower cost and more efficient projectors, meaning longer battery life and significantly lower levels of heat.

Researchers used the technology to create a small picoprojector, seen here, which could be embedded in a smartphone, tablet or other device.
Credit: Image courtesy of ImagineOptix Corp.

Researchers from North Carolina State University and ImagineOptix Corporation have developed new technology to convert unpolarized light into polarized light, which makes projectors that use liquid crystal (LC) technology almost twice as energy efficient. The new technology has resulted in smaller, lower cost and more efficient projectors, meaning longer battery life and significantly lower levels of heat.

Related Articles


All LC projectors -- used from classrooms to conference rooms -- utilize polarized light. But efficient light sources -- such as light-emitting diodes, or LEDs -- produce unpolarized light. As a result, the light generated by LEDs has to be converted into polarized light before it can be used.

The most common method of polarizing light involves passing the unpolarized light through a polarizing filter. But this process wastes more than 50 percent of the originally generated light, with the bulk of the "lost" light being turned into heat -- which is a major reason that projectors get hot and have noisy cooling fans.

But the new technology developed at NC State allows approximately 90 percent of the unpolarized light to be polarized and, therefore, used by the projector.

The ImagineOptix-sponsored research team was also able to use the technology to create a small "picoprojector," which could be embedded in a smartphone, tablet or other device.

"This technology, which we call a polarization grating-polarization conversion system (PGPCS), will significantly improve the energy efficiency of LC projectors," says Dr. Michael Escuti, co-author of a paper describing the research and an associate professor of electrical and computer engineering at NC State. "The commercial implications are broad reaching. Projectors that rely on batteries will be able to run for almost twice as long. And LC projectors of all kinds can be made twice as bright but use the same amount of power that they do now. However, we can't promise that this will make classes and meetings twice as exciting."

Because only approximately 10 percent of the unpolarized light is converted into heat -- as opposed to the more than 50 percent light loss that stems from using conventional polarization filters -- the new technology will also reduce the need for loud cooling fans and enable more compact designs.

The technology is a small single-unit assembly composed of four immobile parts. A beam of unpolarized light first passes through an array of lenses, which focus the light into a grid of spots. The light then passes through a polarization grating, which consists of a thin layer of liquid crystal material on a glass plate. The polarization grating separates the spots of light into pairs, which have opposite polarizations. The light then passes through a louvered wave plate, which is a collection of clear, patterned plates that gives the beams of light the same polarization. Finally, a second array of lenses focuses the spots of light back into a single, uniform beam of light.

The paper, "Efficient and monolithic polarization conversion system based on a polarization grating," was published July 10 in Applied Optics. The paper was co-authored by Drs. Jihwan Kim and Ravi Komanduri, postdoctoral researchers at NC State; Kristopher Lawler, a research associate at NC State; Jason Kekas, of ImagineOptix Corp.; and Escuti. The research was funded by ImagineOptix, a start-up company co-founded by Escuti and Kekas.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jihwan Kim, Ravi K. Komanduri, Kristopher F. Lawler, D. Jason Kekas, Michael J. Escuti. Efficient and monolithic polarization conversion system based on a polarization grating. Applied Optics, 2012; 51 (20): 4852 DOI: 10.1364/AO.51.004852

Cite This Page:

North Carolina State University. "Researchers almost double light efficiency in LC projectors." ScienceDaily. ScienceDaily, 16 July 2012. <www.sciencedaily.com/releases/2012/07/120716124750.htm>.
North Carolina State University. (2012, July 16). Researchers almost double light efficiency in LC projectors. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/07/120716124750.htm
North Carolina State University. "Researchers almost double light efficiency in LC projectors." ScienceDaily. www.sciencedaily.com/releases/2012/07/120716124750.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins