Featured Research

from universities, journals, and other organizations

Asteroid strikes cause the Moon's surface to smooth

Date:
July 16, 2012
Source:
American Geophysical Union
Summary:
The lunar surface is marred by impact craters, remnants of the collisions that have occurred over the past 4.5 billion years. The Orientale basin, the Moon's most recently formed sizeable crater, stands out from the rest. The crater, which lies along the southwestern boundary between the near and far sides of the moon, appears as a dark spot ringed by concentric circles of ejecta that reach more than 900 kilometers (560 miles) from the impact location. Researchers now propose that whenever a large body slams into the Moon, seismic waves produced during the impact travel through the solid lunar material, inducing seismic shaking that causes landslides and surface settling.

The lunar surface is marred by impact craters, remnants of the collisions that have occurred over the past 4.5 billion years. The Orientale basin, the Moon's most recently formed sizeable crater, stands out from the rest. The crater, which lies along the southwestern boundary between the near and far sides of the moon, appears as a dark spot ringed by concentric circles of ejecta that reach more than 900 kilometers (560 miles) from the impact location.

Though other craters have similar rings, the lunar surface surrounding the Orientale basin is unusually rough with reduced concavity. The anomalous features were identified by Kreslavsky and Head after they produced a map of the lunar surface topographic roughness using observations from the Lunar Orbiter Laser Altimeter aboard the Lunar Reconnaissance Orbiter.

The fact that other craters -- even those of similar size and age -- lack similar features suggests to the authors that mechanisms such as weathering or gravitational settling cannot explain the anomaly. Instead, the authors suggest that the Orientale basin, which formed about 3.8 billion years ago, stands out simply because it is the youngest large crater.

They propose that whenever a large body slams into the Moon, seismic waves produced during the impact travel through the solid lunar material, inducing seismic shaking that causes landslides and surface settling. They estimate that the impactor would need to be at least 100 km (62 mi) across to cause sizeable seismic shaking.

Unfortunately, the authors may need to wait more than a little while to conclusively test their hypothesis -- until the Moon is next rocked by a massive asteroid, an event not expected to occur in the foreseeable future.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. A. Kreslavsky, J. W. Head. New observational evidence of global seismic effects of basin-forming impacts on the Moon from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data. Journal of Geophysical Research, 2012; 117 DOI: 10.1029/2011JE003975

Cite This Page:

American Geophysical Union. "Asteroid strikes cause the Moon's surface to smooth." ScienceDaily. ScienceDaily, 16 July 2012. <www.sciencedaily.com/releases/2012/07/120716163149.htm>.
American Geophysical Union. (2012, July 16). Asteroid strikes cause the Moon's surface to smooth. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2012/07/120716163149.htm
American Geophysical Union. "Asteroid strikes cause the Moon's surface to smooth." ScienceDaily. www.sciencedaily.com/releases/2012/07/120716163149.htm (accessed September 14, 2014).

Share This



More Space & Time News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

International Space Station Crew Returns Safely To Earth

International Space Station Crew Returns Safely To Earth

Newsy (Sep. 11, 2014) The three-man crew touched down in Kazakhstan Wednesday after more than five months of science experiments in orbit. Video provided by Newsy
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Europe Readies 'space Plane' For Sub-Orbital Test Flight

Europe Readies 'space Plane' For Sub-Orbital Test Flight

AFP (Sep. 10, 2014) The European Space Agency on Tuesday put the final touches to its first-ever "space plane" before blasting it into sub-orbit for tests aimed at eventually paving the way to the continent's first space shuttle. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins