Featured Research

from universities, journals, and other organizations

Lightweight construction on the way to volume production

Date:
July 17, 2012
Source:
Fraunhofer-Gesellschaft
Summary:
Cars and airplanes need to lose weight – and one way to do that is to produce as many of the components as possible using carbon-fiber-reinforced plastics CRP. Up until now, these components have been made by hand. Today, there are automated production methods that are also suitable for volume production in carmaking.

There are automated production methods that are also suitable for volume production in car-making.
Credit: Image courtesy of Fraunhofer-Gesellschaft

Cars and airplanes need to lose weight -- and one way to do that is to produce as many of the components as possible using carbon-fiber-reinforced plastics CRP. Up until now, these components have been made by hand. Today, there are automated production methods that are also suitable for volume production in car-making.

Carmakers and airplane manufacturers are very particular when it comes to the weight of their models: the lighter they are, the less fuel they consume -- and the less carbon dioxide they blow into the air. If a car loses 100 kilograms, depending on the type and driving style, it can save anywhere from 0.3 to 0.6 liters of fuel per 100 kilometers traveled. It also means a reduction of 7 to 12 grams in carbon dioxide emissions for each kilometer.

New materials, joining technologies and lightweight-construction concepts will help cars lose weight. Particularly promising are the carbon-fiber-reinforced plastics, or CRP for short: they are roughly 60 percent lighter than steel and around 30 percent lighter than aluminum. The material also never rusts and can be used to construct crash-relevant structures such as body components. These materials get their stability from carbon fibers embedded in the plastic matrix. Depending on the demands, the fibers can be superimposed over several layers and in varying directions. A large share of the components found in aircraft and Formula One racers are already made of CRP. Producing the components using reinforced plastic is still quite an effort, however -- many worksteps still have to be performed manually, and even the automated steps often have to be reworked by hand. BMW is now taking a major step forward with its new model I3, which will roll off the assembly line in 2013 with a body almost entirely made of CRP.

72 companies, educational institutions and research institutes, together with supporting organizations in the Munich-Augsburg-Ingolstadt area, have joined forces to create the MAI Carbon Leading-Edge Cluster Initiative to get carbon-fiber-reinforced plastics in shape for mass production. The cluster is one of the winning entries in the Leading-Edge Cluster Competition sponsored by the German Federal Ministry of Education and Research BMBF. The initiative is funded with 40 million euros from the BMBF, with another 40 million euros contributed by industry. A key partner in the cluster, along with Audi and BMW, is the Fraunhofer project group "Functional Lightweight Design FIL." The project group was established in 2009 as a branch operation of the Fraunhofer Institute for Chemical Technology ICT in Augsburg. With funding from the State of Bavaria, the project group is expected to develop into an independent Fraunhofer Institute in the years to come. "Our goal is to reduce the manufacturing costs of CRP components by 90 percent over the five years of the project. We intend to accomplish this primarily through new production methods that are also well-suited for volume production," notes Prof. Dr.-Ing. Klaus Drechsler, head of the Fraunhofer project group and holder of the Chair in Carbon Composites at the Technische Universitδt Mόnchen. Prior to his current appointment, Drechsler worked for several years at Daimler-Chrysler, before transferring to the Institute of Aircraft Design in Stuttgart.

The researchers in Augsburg have already developed a new production method for the automobile industry. The method combines a braiding machine of the kind typically used in the textiles industry with a pultrusion system further developed by the Fraunhofer Institute for Chemical Technology ICT. The braiding machine gives the dry carbon fibers the right form, and the pultrusion machine covers them with resin. The special thing about this method: up until now, everything had to be performed by hand -- fibers placed in the tool and lined up and the resin injected -- but now all of these steps are fully automated. Made by hand, the individual components could only be produced step by step, with all components of a certain length. The combination system, on the other hand, produces the components continuously, so the parts it can produce could theoretically be infinitely long. Sponsors for the project are BMBF; development partners are Audi and Voith, a mechanical engineering firm.

The Fraunhofer project group has quite a bit to offer the aviation industry as well: among other things, together with colleagues from Premium Aerotec and Eurocopter, researchers there are developing a fully automated production method for large-scale CRP components. The core of the technology is a robot with a laying head: It picks up the resin-coated carbon fibers and lays them on the tool, where the fibers are then hardened. This step has been performed by hand until now -- an elaborate undertaking resulting in lots of scraps and quality levels that are not always optimal. The automated process, on the other hand, is well-suited for volume production and delivers good and constant quality. And it doesn't generate any scrap, either -- not a millimeter of fiber is wasted. The robot is currently working day and night in the laboratory in Augsburg. The components it produces are inspected at Airbus. "The method has a good chance of being adopted in series production of aircraft construction, which will begin in around two years," Drechsler is pleased to report. The project is sponsored by the German Federal Ministry of Economics and Technology BMWI within the framework of research programs in aviation. The project volume is far in excess of one million euros.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Lightweight construction on the way to volume production." ScienceDaily. ScienceDaily, 17 July 2012. <www.sciencedaily.com/releases/2012/07/120717084817.htm>.
Fraunhofer-Gesellschaft. (2012, July 17). Lightweight construction on the way to volume production. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2012/07/120717084817.htm
Fraunhofer-Gesellschaft. "Lightweight construction on the way to volume production." ScienceDaily. www.sciencedaily.com/releases/2012/07/120717084817.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins