Featured Research

from universities, journals, and other organizations

Angry Birds meets bioinformatics

Date:
July 20, 2012
Source:
University of Alabama at Birmingham
Summary:
Informatics researchers create an experimental framework for online, clinic-ready apps and ask others to embrace and expand it.

This snapshot is the result of using an Imagejs module to determine how fast brain cancer cells are growing. The darks blots are the nuclei of cells dividing as part of the high-speed abnormal growth seen in tumors.
Credit: Image courtesy of University of Alabama at Birmingham

For years researchers have been looking for ways to improve patient care by making better use of health information. So far, Big Data and Web 3.0, techie terms for massive stores of patient data and a unified global system to analyze it -- have not realized their full potential in medical research.

Related Articles


Meanwhile, you can cruise your favorite app store for hundreds of Web applications that analyze data, in many cases to create a smartphone game. No need to buy pricey hard drives or software packages. Ironically, the market asked Web browsers, the part of your computer that talks to the internet, to do so many things in recent years that this cheap, universal computing environment became an analytical powerhouse, especially when you network browsers together in "clouds."

Bioinformatics experts have looked on with envy, wishing they too had access to simple, powerful and free Web apps like those that drive Angry Birds. Now a team at the University of Alabama at Birmingham has made a start at delivering that.

As detailed in the July 20 edition of the Journal of Pathology Informatics, ImageJS is a free app system in some ways like Angry Birds, or perhaps more like Instagram, except that it analyzes tissue images instead of offering a digital shooting gallery or dressing up family photos. Specifically, the first ImageJS module enables pathologists to drag a digitized pathology slide into a Web app and analyze it for malignancy based on color changes that occur when cancer cells are exposed to standard dyes. But the developers' vision is more ambitious than that.

The pathology modules are the first in a series coming from Jonas Almeida, Ph.D., director of the Division of Informatics in the UAB School of Medicine Department of Pathology and corresponding author of the JPI study.

Future modules will seek to perform genomics analysis, make the system capable of cloud computing and enable doctors to compare their patient's data to similar cases stored in national databases. Such comparisons promise to increase diagnostic accuracy and rule out treatments that clash with a person's genetic signature.

"We created a new kind of computational tool that promises to make patient data more useful where it's collected," says Almeida. A demonstration is online on YouTube, and it's available from the Google Chrome App store, Google Code and Github.

"But ImageJS is an informatics experiment at this point; it will only become something special if pathologists embrace it," he says.

Public resources such as The Cancer Atlas, Gene Expression Omnibus and 1,000 Genomes Project have been generating massive data sets for years, but researchers are just beginning to harness it with Web apps to improve health-care delivery. To tap this potential, experts need apps that are neither overly complex nor require unsafe downloads of desktop applications.

The promise of ImageJS, Almeida says, lies in the willingness of pathologists to partner with biostatisticians at other institutions to write modules for this open-coded system that add value or resolve their specific problems. If that happens, ImageJS could come to resemble the social coding communities that surround smart phones, in this case to deliver better healthcare.

"Pathologists are extremely eager for this, but the barriers so far have made it frustrating," says James Robinson Hackney, M.D., a UAB pathologist who consulted on the ImageJS project. "It's great to watch a colleague's face when this system enables them almost instantly to accomplish a goal they had given up on using past applications."

The "ImageJS" name pays homage to the "ImageJ," an image-analysis program pioneered by the National Institutes of Health. ImageJ was written in the JAVA language and required hours of programming and security-breaching software to make the small changes needed to work with a hospital's system. Because hospital systems often prevent just such software downloads, its use has been limited there.

JAVA also posed challenges for the mobile Web and tablet platforms, which seldom support code written in languages other than the browser's native JavaScript, says Almeida. In contrast, the new ImageJS, a collection of Web-based algorithms written in JavaScript, enables researchers to change apps to fit their specific needs with a few lines of code and repeat each other's informatics experiments.

Most important, ImageJS code migrates from the code repository to the browser and eliminates the risks of travel-related data damage and exposure that violates patient privacy.

The central barrier to Web 3.0, an approaching era when all computers act as one to achieve new levels of collaboration and computing power, is that data compiled to date worldwide has been locked in silos that can't be searched, shared or analyzed.

While researchers hope to translate existing databases into the simple, universal Web 3.0 data formats that will allow this kind of sharing, they are also starting fresh. Almeida's team, for instance, will be attempting over the next year to build a database that offers future ImageJS users the option to store images and related analysis in a resource description framework or RDF.

Once data is stored in this format, it can be found by queries written in SPARQL, a simple computer language that can be learned by most people in a couple of hours. That is extremely important, says Almeida, because the next generation of bioinformatics must not remain the province of programmers. Instead, the researchers running the clinical trials and translational studies must write their own programs, which would add "stunning, new analytic value" to their research and feed into the new global databases.

The UAB team's work proceeds alongside other academic efforts, such as Tetherless World Constellation at Rensselaer Polytechnic Institute and ventures such as LinkedLifeData, Sindice and Hadoop.

Like a game, everyone's hoping to get to the next level. But for the field of bioinformatics -- and for patients -- the stakes are real, and they're much higher.


Story Source:

The above story is based on materials provided by University of Alabama at Birmingham. Note: Materials may be edited for content and length.


Cite This Page:

University of Alabama at Birmingham. "Angry Birds meets bioinformatics." ScienceDaily. ScienceDaily, 20 July 2012. <www.sciencedaily.com/releases/2012/07/120720103349.htm>.
University of Alabama at Birmingham. (2012, July 20). Angry Birds meets bioinformatics. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/07/120720103349.htm
University of Alabama at Birmingham. "Angry Birds meets bioinformatics." ScienceDaily. www.sciencedaily.com/releases/2012/07/120720103349.htm (accessed October 30, 2014).

Share This



More Computers & Math News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
IBM Taps Into Twitter's Data With New Partnership

IBM Taps Into Twitter's Data With New Partnership

Newsy (Oct. 29, 2014) The new partnership will allow IBM to access Twitter’s data and analytics to help IBM clients better understand their consumers. Video provided by Newsy
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins