Featured Research

from universities, journals, and other organizations

Paving the way to a scalable device for quantum information processing

Date:
July 24, 2012
Source:
National Physical Laboratory
Summary:
Researchers have demonstrated for the first time a monolithic 3D ion microtrap array which could be scaled up to handle several tens of ion-based quantum bits. The research shows how it is possible to realize this device embedded in a semiconductor chip, and demonstrates the device's ability to confine individual ions at the nanoscale.

Semi-conductor chip used by scientists at the National Physcial Laboratory to test the first scalable 3D ion microtrap.
Credit: National Physical Laboratory

Researchers at NPL have demonstrated for the first time a monolithic 3D ion microtrap array which could be scaled up to handle several tens of ion-based quantum bits (qubits). The research, published in Nature Nanotechnology, shows how it is possible to realise this device embedded in a semiconductor chip, and demonstrates the device's ability to confine individual ions at the nanoscale.

As the UK's National Measurement Institute, NPL is interested in how exotic quantum states of matter can be used to make high precision measurements, of for example, time and frequency, ever more accurate. This research, however, has implications wider than measurement. The device could be used in quantum computation, where entangled qubits are used to execute powerful quantum algorithms. As an example, factorisation of large numbers by a quantum algorithm is dramatically faster than with a classical algorithm.

Scalable ion traps consisting of a 2D array of electrodes have been developed, however 3D trap geometries can provide a superior potential for confining the ions. Creating a successful scalable 3D ion trapping device is based on maintaining two qualities -- the ability to scale the device to accommodate increasing numbers of atomic particles, whilst preserving the trapping potential which enables precise control of ions at the atomic level. Previous research resulted in compromising at least one of these factors, largely due to limitations in the manufacturing processes.

The team at NPL has now produced the first monolithic ion microtrap array which uniquely combines a near ideal 3D geometry with a scalable fabrication process -- a breakthrough in this field. In terms of elementary operating characteristics, the microtrap chip outperforms all other scalable devices for ions.

Using a novel process based on conventional semiconductor fabrication technology, scientists developed the microtrap device from a silica-on-silicon wafer. The team were able to confine individual and strings of up to 14 ions in a single segment of the array. The fabrication process should enable device scaling to handle greatly increased numbers of ions, whilst retaining the ability to individually control each of them.

Due to the enormous progress in nanotechnology, the power of classical processor chips has been scaled up according to Moore's Law. Quantum processors are in their infancy, and the NPL device is a promising approach for advancing the scale of such chips for ion-based qubits.

Alastair Sinclair, Principal Scientist, NPL said: "We managed to produce an essential device or tool, which is critical for state of the art research and development in quantum technologies. This could be the basis of a future atomic clock device, with relevance for location, timing, navigation services or even the basis of a future quantum processor chip based on trapped ions, leading to a quantum computer and a quantum information network."


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guido Wilpers, Patrick See, Patrick Gill, Alastair G. Sinclair. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nature Nanotechnology, 2012; DOI: 10.1038/nnano.2012.126

Cite This Page:

National Physical Laboratory. "Paving the way to a scalable device for quantum information processing." ScienceDaily. ScienceDaily, 24 July 2012. <www.sciencedaily.com/releases/2012/07/120724115011.htm>.
National Physical Laboratory. (2012, July 24). Paving the way to a scalable device for quantum information processing. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/07/120724115011.htm
National Physical Laboratory. "Paving the way to a scalable device for quantum information processing." ScienceDaily. www.sciencedaily.com/releases/2012/07/120724115011.htm (accessed July 24, 2014).

Share This




More Computers & Math News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Facebook Earnings Put Smile on Investors Faces

Facebook Earnings Put Smile on Investors Faces

Reuters - Business Video Online (July 23, 2014) Facebook earnings beat forecasts- with revenue climbing 61 percent. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
StubHub Caught in Global Cyber Crime Ring

StubHub Caught in Global Cyber Crime Ring

Reuters - Business Video Online (July 23, 2014) eBay's StubHub is caught up in an international cyber crime ring stretching from North America to Europe. Conway G. Gittens reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins