Featured Research

from universities, journals, and other organizations

Potential cancer roadblock found

Date:
August 1, 2012
Source:
Michigan State University
Summary:
By identifying a key protein that tells certain breast cancer cells when and how to move, researchers hope to better understand the process by which breast cancer spreads, or metastasizes.

Jian Chen and Kathleen Gallo of MSU's Department of Physiology, shown in their lab, have identified a key protein that plays a role in how cancer spreads.
Credit: Derrick Turner

By identifying a key protein that tells certain breast cancer cells when and how to move, researchers at Michigan State University hope to better understand the process by which breast cancer spreads, or metastasizes.

When breast cancer metastasizes, cancer cells break away from a primary tumor and move to other organs in the body, including the lungs, liver and brain. In work published recently in the journal Cancer Research, MSU researchers Kathy Gallo and Jian Chen show a protein called MLK3 (mixed lineage kinase 3) is a critical driver of breast cancer cell migration and invasion.

More importantly, Chen and Gallo showed that in triple-negative breast tumor cells, which are more aggressive and for which targeted therapies are needed, it is possible to thwart that cell migration and invasion.

"While the classical approach to cancer drugs has been to find drugs that kill tumor cells, there recently also is an interest in finding drugs that interrupt metastasis," said Gallo, a professor in MSU's Department of Physiology. "The hope is that such drugs in combination with conventional therapies may lead to better outcomes in patients."

As part of their study, Gallo and Chen, a biochemistry graduate student, also found that eliminating MLK3 prevented tumors in animals from metastasizing to the lungs, providing the foundation for future research on targeting MLK3 pathways as an approach to preventing the spread of cancer.

The researchers identified how key cellular proteins were instructed by the MLK3 protein -- through the addition of molecular tags called phosphates -- to interact with one another, leading cancer cells to move. Specifically, MLK3 promotes the addition of phosphates to another protein called paxillin, which is known to control how cells move.

Gallo and Chen then stopped cell movement in breast cancer models by eliminating MLK3 altogether or using a drug called CEP-1347 to block MLK3's ability to add phosphates to other proteins. The experimental results indicate that when certain cancer cells lose MLK3, the ability to add phosphates is impaired, eventually crippling the cell migration machinery and diminishing cell movement.

"Our research suggests that the intracellular pathways involving MLK3 that control cell movement could provide new targets for the treatment of patients with metastatic cancer," Chen said. "Drugs developed for combating the MLK3 activity may be useful in reducing the spread of breast cancer."

Gallo added that MLK3 is a protein kinase, and these types of proteins have proven to be good drug targets in cancers and other diseases.

"While drugs such as chemotherapy kill all cells, research has shown drugs that inhibit kinases often can be effective with fewer side effects," she said.

The next step for the researchers is to test whether an MLK3 inhibitor can prevent cancer from metastasizing in animal models.

"Cancer is a very complex collection of diseases, but we believe that certain types of cancers may be sensitive to MLK inhibitors," Gallo said, "and targeting MLK3 may provide a very useful weapon in the fight against cancer."

The team's research was supported by grants from the Department of Defense's Breast Cancer Research Program and the Elsa U. Pardee Foundation. The MLK inhibitor, CEP-1347, was provided by Cephalon Inc., a wholly owned, indirect subsidiary of Teva Pharmaceuticals Industries Ltd.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Chen, K. A. Gallo. MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Research, 2012; DOI: 10.1158/0008-5472.CAN-12-0655

Cite This Page:

Michigan State University. "Potential cancer roadblock found." ScienceDaily. ScienceDaily, 1 August 2012. <www.sciencedaily.com/releases/2012/08/120801132719.htm>.
Michigan State University. (2012, August 1). Potential cancer roadblock found. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/08/120801132719.htm
Michigan State University. "Potential cancer roadblock found." ScienceDaily. www.sciencedaily.com/releases/2012/08/120801132719.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins