Featured Research

from universities, journals, and other organizations

Potential cancer roadblock found

Date:
August 1, 2012
Source:
Michigan State University
Summary:
By identifying a key protein that tells certain breast cancer cells when and how to move, researchers hope to better understand the process by which breast cancer spreads, or metastasizes.

Jian Chen and Kathleen Gallo of MSU's Department of Physiology, shown in their lab, have identified a key protein that plays a role in how cancer spreads.
Credit: Derrick Turner

By identifying a key protein that tells certain breast cancer cells when and how to move, researchers at Michigan State University hope to better understand the process by which breast cancer spreads, or metastasizes.

When breast cancer metastasizes, cancer cells break away from a primary tumor and move to other organs in the body, including the lungs, liver and brain. In work published recently in the journal Cancer Research, MSU researchers Kathy Gallo and Jian Chen show a protein called MLK3 (mixed lineage kinase 3) is a critical driver of breast cancer cell migration and invasion.

More importantly, Chen and Gallo showed that in triple-negative breast tumor cells, which are more aggressive and for which targeted therapies are needed, it is possible to thwart that cell migration and invasion.

"While the classical approach to cancer drugs has been to find drugs that kill tumor cells, there recently also is an interest in finding drugs that interrupt metastasis," said Gallo, a professor in MSU's Department of Physiology. "The hope is that such drugs in combination with conventional therapies may lead to better outcomes in patients."

As part of their study, Gallo and Chen, a biochemistry graduate student, also found that eliminating MLK3 prevented tumors in animals from metastasizing to the lungs, providing the foundation for future research on targeting MLK3 pathways as an approach to preventing the spread of cancer.

The researchers identified how key cellular proteins were instructed by the MLK3 protein -- through the addition of molecular tags called phosphates -- to interact with one another, leading cancer cells to move. Specifically, MLK3 promotes the addition of phosphates to another protein called paxillin, which is known to control how cells move.

Gallo and Chen then stopped cell movement in breast cancer models by eliminating MLK3 altogether or using a drug called CEP-1347 to block MLK3's ability to add phosphates to other proteins. The experimental results indicate that when certain cancer cells lose MLK3, the ability to add phosphates is impaired, eventually crippling the cell migration machinery and diminishing cell movement.

"Our research suggests that the intracellular pathways involving MLK3 that control cell movement could provide new targets for the treatment of patients with metastatic cancer," Chen said. "Drugs developed for combating the MLK3 activity may be useful in reducing the spread of breast cancer."

Gallo added that MLK3 is a protein kinase, and these types of proteins have proven to be good drug targets in cancers and other diseases.

"While drugs such as chemotherapy kill all cells, research has shown drugs that inhibit kinases often can be effective with fewer side effects," she said.

The next step for the researchers is to test whether an MLK3 inhibitor can prevent cancer from metastasizing in animal models.

"Cancer is a very complex collection of diseases, but we believe that certain types of cancers may be sensitive to MLK inhibitors," Gallo said, "and targeting MLK3 may provide a very useful weapon in the fight against cancer."

The team's research was supported by grants from the Department of Defense's Breast Cancer Research Program and the Elsa U. Pardee Foundation. The MLK inhibitor, CEP-1347, was provided by Cephalon Inc., a wholly owned, indirect subsidiary of Teva Pharmaceuticals Industries Ltd.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Chen, K. A. Gallo. MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Research, 2012; DOI: 10.1158/0008-5472.CAN-12-0655

Cite This Page:

Michigan State University. "Potential cancer roadblock found." ScienceDaily. ScienceDaily, 1 August 2012. <www.sciencedaily.com/releases/2012/08/120801132719.htm>.
Michigan State University. (2012, August 1). Potential cancer roadblock found. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2012/08/120801132719.htm
Michigan State University. "Potential cancer roadblock found." ScienceDaily. www.sciencedaily.com/releases/2012/08/120801132719.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins