Featured Research

from universities, journals, and other organizations

Composite nanofibers open next chapter in orthopaedic biomaterials

Date:
August 7, 2012
Source:
University of Pennsylvania School of Medicine
Summary:
Scientists have developed and validated a new technology in which composite nanofibrous scaffolds provide a loose enough structure for cells to colonize without impediment, but still can instruct cells how to lay down new tissue.

This shows the dynamic transition in a fibrous biomaterial composed of tunable fractions of structural (red) and water-soluble, sacrificial (green) electrospun polymeric nanofibers. The image was captured as fluid entered from right to left, dissolving sacrificial fibers and creating a more open fibrous network.
Credit: Brendon M. Baker, Ph.D.; Perelman School of Medicine, University of Pennsylvania

Bioengineered replacements for tendons, ligaments, the meniscus of the knee, and other tissues require re-creation of the exquisite architecture of these tissues in three dimensions. These fibrous, collagen-based tissues located throughout the body have an ordered structure that gives them their robust ability to bear extreme mechanical loading.

Many labs have been designing treatments for ACL and meniscus tears of the knee, rotator cuff injuries, and Achilles tendon ruptures for patients ranging from the weekend warrior to the elite Olympian. One popular approach has involved the use of scaffolds made from nano-sized fibers, which can guide tissue to grow in an organized way. Unfortunately, the fibers' widespread application in orthopaedics has been slowed because cells do not readily colonize the scaffolds if fibers are too tightly packed.

Robert L. Mauck, PhD, professor of Orthopaedic Surgery and Bioengineering, and Brendon M. Baker, PhD, previously a graduate student in the Mauck lab at the Perelman School of Medicine, University of Pennsylvania, have developed and validated a new technology in which composite nanofibrous scaffolds provide a loose enough structure for cells to colonize without impediment, but still can instruct cells how to lay down new tissue. Their findings appear online this week in the Proceedings of the National Academy of Sciences.

"These are tiny fibers with a huge potential that can be unlocked by including a temporary, space-holding element," says Mauck. The fibers are on the order of nanometers in diameter. A nanometer is a billionth of a meter.

Using a method that has been around since the 1930s called electrospinning, the team made composites containing two distinct fiber types: a slow-degrading polymer and a water-soluble polymer that can be selectively removed to increase or decrease the spacing between fibers. The fibers are made by electrically charging solutions of dissolved polymers, causing the solution to erupt as a fine spray of fibers which fall like snow onto a rotating drum and collect as a stretchable fabric. This textile can then be shaped for medical applications and cells can be added, or it can be implanted directly -- as a patch of sorts -- into damaged tissue for neighboring cells to colonize.

Increasing the proportion of the dissolving fibers enhanced the ability of host cells to colonize the nanofiber mesh and eventually migrate to achieve a uniform distribution and form a truly three- dimensional tissue. Despite the removal of more than 50 percent of the initial fibers, the remaining scaffold was a sufficient architecture to align cells and direct the formation of a highly organized extracellular matrix by collagen-producing cells. This, in turn, led to a biologic material with tensile properties nearly matching human meniscus tissue, in lab tests of tissue mechanics.

"This approach transforms what was once an interesting biomaterials phenomenon -- cells on the surface of nanofibrous mats -- into a method by which functional, three-dimensional tissues can be formed," says Mauck.

It is a marked step forward in the engineering of load-bearing fibrous tissues, and will eventually find widespread applications in regenerative medicine, say the authors.

Mauck and his team are currently testing these novel materials in a large animal model of meniscus repair and for other orthopaedic applications.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brendon M. Baker, Roshan P. Shah, Amy M. Silverstein, John L. Esterhai, Jason A. Burdick, and Robert L. Mauck. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. PNAS, August 7, 2012 DOI: 10.1073/pnas.1206962109

Cite This Page:

University of Pennsylvania School of Medicine. "Composite nanofibers open next chapter in orthopaedic biomaterials." ScienceDaily. ScienceDaily, 7 August 2012. <www.sciencedaily.com/releases/2012/08/120807132304.htm>.
University of Pennsylvania School of Medicine. (2012, August 7). Composite nanofibers open next chapter in orthopaedic biomaterials. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/08/120807132304.htm
University of Pennsylvania School of Medicine. "Composite nanofibers open next chapter in orthopaedic biomaterials." ScienceDaily. www.sciencedaily.com/releases/2012/08/120807132304.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins