Featured Research

from universities, journals, and other organizations

Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth

Date:
August 15, 2012
Source:
Suomen Akatemia (Academy of Finland)
Summary:
One of the most sought-after goals in nuclear physics is an understanding of the structure of superheavy elements in the so-called "island of stability". These nuclei contain a large number of protons, and would ordinarily be ripped apart by the strong Coulomb repulsion between them. However, quantum mechanical shell-effects act to stabilize the nuclei, meaning that they can then live long enough to be observed in the laboratory. Now, experimental advances make it possible to study the nucleus 256Rf in detail for the first time.

One of the most sought-after goals in nuclear physics is an understanding of the structure of superheavy elements in the so-called "island of stability." These nuclei contain a large number of protons, and would ordinarily be ripped apart by the strong Coulomb repulsion between them. However, quantum mechanical shell-effects act to stabilize the nuclei, meaning that they can then live long enough to be observed in the laboratory.

Related Articles


In order to understand these "shell effects," detailed experimental studies are needed. Such studies are unfortunately precluded by the fact that superheavy elements can only be produced in small numbers (sometimes only a few atoms per month). It is, however, possible to study lighter nuclei in more detail. These studies can be used to gain indirect information on the island of stability.

Now, experimental advances at the Accelerator Laboratory of the University of Jyväskylä (JYFL-ACCLAB), Finland, have meant that it has been possible to study the nucleus 256Rf in detail for the first time. The facilities at JYFL-ACCLAB are currently the only ones worldwide which permit such studies to be carried out. The 256Rf nucleus has 104 protons, which corresponds to the accepted gateway to the superheavy elements. The 256Rf nucleus is the heaviest which has so far been studied in this manner.


Story Source:

The above story is based on materials provided by Suomen Akatemia (Academy of Finland). Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Greenlees, J. Rubert, J. Piot, B. Gall, L. Andersson, M. Asai, Z. Asfari, D. Cox, F. Dechery, O. Dorvaux, T. Grahn, K. Hauschild, G. Henning, A. Herzan, R.-D. Herzberg, F. Heßberger, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, T.-L. Khoo, M. Leino, J. Ljungvall, A. Lopez-Martens, R. Lozeva, P. Nieminen, J. Pakarinen, P. Papadakis, E. Parr, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, D. Seweryniak, J. Sorri, B. Sulignano, Ch. Theisen, J. Uusitalo, M. Venhart. Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of the Z=104 Nucleus ^{256}Rf. Physical Review Letters, 2012; 109 (1) DOI: 10.1103/PhysRevLett.109.012501

Cite This Page:

Suomen Akatemia (Academy of Finland). "Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth." ScienceDaily. ScienceDaily, 15 August 2012. <www.sciencedaily.com/releases/2012/08/120815082719.htm>.
Suomen Akatemia (Academy of Finland). (2012, August 15). Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/08/120815082719.htm
Suomen Akatemia (Academy of Finland). "Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth." ScienceDaily. www.sciencedaily.com/releases/2012/08/120815082719.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) — Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins