Featured Research

from universities, journals, and other organizations

Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth

Date:
August 15, 2012
Source:
Suomen Akatemia (Academy of Finland)
Summary:
One of the most sought-after goals in nuclear physics is an understanding of the structure of superheavy elements in the so-called "island of stability". These nuclei contain a large number of protons, and would ordinarily be ripped apart by the strong Coulomb repulsion between them. However, quantum mechanical shell-effects act to stabilize the nuclei, meaning that they can then live long enough to be observed in the laboratory. Now, experimental advances make it possible to study the nucleus 256Rf in detail for the first time.

One of the most sought-after goals in nuclear physics is an understanding of the structure of superheavy elements in the so-called "island of stability." These nuclei contain a large number of protons, and would ordinarily be ripped apart by the strong Coulomb repulsion between them. However, quantum mechanical shell-effects act to stabilize the nuclei, meaning that they can then live long enough to be observed in the laboratory.

Related Articles


In order to understand these "shell effects," detailed experimental studies are needed. Such studies are unfortunately precluded by the fact that superheavy elements can only be produced in small numbers (sometimes only a few atoms per month). It is, however, possible to study lighter nuclei in more detail. These studies can be used to gain indirect information on the island of stability.

Now, experimental advances at the Accelerator Laboratory of the University of Jyväskylä (JYFL-ACCLAB), Finland, have meant that it has been possible to study the nucleus 256Rf in detail for the first time. The facilities at JYFL-ACCLAB are currently the only ones worldwide which permit such studies to be carried out. The 256Rf nucleus has 104 protons, which corresponds to the accepted gateway to the superheavy elements. The 256Rf nucleus is the heaviest which has so far been studied in this manner.


Story Source:

The above story is based on materials provided by Suomen Akatemia (Academy of Finland). Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Greenlees, J. Rubert, J. Piot, B. Gall, L. Andersson, M. Asai, Z. Asfari, D. Cox, F. Dechery, O. Dorvaux, T. Grahn, K. Hauschild, G. Henning, A. Herzan, R.-D. Herzberg, F. Heßberger, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, T.-L. Khoo, M. Leino, J. Ljungvall, A. Lopez-Martens, R. Lozeva, P. Nieminen, J. Pakarinen, P. Papadakis, E. Parr, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, D. Seweryniak, J. Sorri, B. Sulignano, Ch. Theisen, J. Uusitalo, M. Venhart. Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of the Z=104 Nucleus ^{256}Rf. Physical Review Letters, 2012; 109 (1) DOI: 10.1103/PhysRevLett.109.012501

Cite This Page:

Suomen Akatemia (Academy of Finland). "Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth." ScienceDaily. ScienceDaily, 15 August 2012. <www.sciencedaily.com/releases/2012/08/120815082719.htm>.
Suomen Akatemia (Academy of Finland). (2012, August 15). Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2012/08/120815082719.htm
Suomen Akatemia (Academy of Finland). "Structure of superheavy elements in 'island of stability': Nucleus 256Rf can now be studied in depth." ScienceDaily. www.sciencedaily.com/releases/2012/08/120815082719.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) — An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) — Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) — The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) — Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins