Featured Research

from universities, journals, and other organizations

Is too much brain activity connected to Alzheimer's disease?

Date:
August 16, 2012
Source:
Public Library of Science
Summary:
High baseline levels of neuronal activity in the best connected parts of the brain may play an important role in the development of Alzheimer's disease.

High baseline levels of neuronal activity in the best connected parts of the brain may play an important role in the development of Alzheimer's disease. This is the main conclusion of a new study appearing in PLoS Computational Biology from a group at VU University Medical Center in Amsterdam, the Netherlands.

Related Articles


In recent times, it has become clear that brain activity patterns change at an early stage in Alzheimer's disease. Moreover, there is reason to believe that, instead of being the consequence of structural damage, they might be the cause: recently, a direct influence of excessive regional neuronal activity on Alzheimer pathology was found in animal experiments. By showing that highly connected 'hub' regions (which display most Alzheimer pathology) indeed possess the highest levels of activity, the present study offers support for the unconventional view that brain dynamics may play a causal role in Alzheimer. As first author, Willem de Haan, says, "this implies that the investigation of factors regulating neuronal activity may open up novel ways to detect, elucidate and counter the disease."

Using a realistic computational model of the human cortex, the authors simulated progressive synaptic damage to brain regions based on their level of activity, and subsequently investigated the effect on the remaining network. With this 'activity dependent degeneration' model, they could not only offer an explanation for the distribution pattern of Alzheimer pathology but also reproduce a range of phenomena encountered in actual neurophysiological data of Alzheimer patients: loss and slowing of neuronal activity, loss of communication between areas, and specific changes in brain network organization.

In upcoming projects the authors plan to verify the predictions from this study in patient data, but also to continue modeling studies. They conclude that: "the use of 'computational neurology' and network theory to unite experimental results and find plausible underlying principles in the growing bulk of human brain data seems inevitable."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Willem de Haan, Katherine Mott, Elisabeth C. W. van Straaten, Philip Scheltens, Cornelis J. Stam. Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease. PLoS Computational Biology, 2012; 8 (8): e1002582 DOI: 10.1371/journal.pcbi.1002582

Cite This Page:

Public Library of Science. "Is too much brain activity connected to Alzheimer's disease?." ScienceDaily. ScienceDaily, 16 August 2012. <www.sciencedaily.com/releases/2012/08/120816201614.htm>.
Public Library of Science. (2012, August 16). Is too much brain activity connected to Alzheimer's disease?. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2012/08/120816201614.htm
Public Library of Science. "Is too much brain activity connected to Alzheimer's disease?." ScienceDaily. www.sciencedaily.com/releases/2012/08/120816201614.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill Test Can Predict Chance Of Death Within A Decade

Treadmill Test Can Predict Chance Of Death Within A Decade

Newsy (Mar. 2, 2015) Johns Hopkins researchers analyzed 58,000 heart stress tests to come up with a formula that predicts a person&apos;s chances of dying in the next decade. Video provided by Newsy
Powered by NewsLook.com
Going Gluten-Free Could Get You A Tax Break

Going Gluten-Free Could Get You A Tax Break

Newsy (Mar. 2, 2015) If a doctor advises you to remove gluten from your diet, you could get a tax deduction on the amount you spend on gluten-free foods. Video provided by Newsy
Powered by NewsLook.com
GlaxoSmithKline and Novartis Try Swapping Success

GlaxoSmithKline and Novartis Try Swapping Success

Reuters - Business Video Online (Mar. 2, 2015) GlaxoSmithKline and Novartis have completed a series of asset swaps worth more than $20 billion. As Grace Pascoe reports they say the deal will reshape both drugmakers. Video provided by Reuters
Powered by NewsLook.com
How Can West Africa Rebuild After Ebola?

How Can West Africa Rebuild After Ebola?

Reuters - Business Video Online (Mar. 2, 2015) How best to rebuild the three West African countries struggling with Ebola will be discussed in Brussels this week. As Hayley Platt reports Sierra Leone has the toughest job ahead - its once thriving economy has been ravaged by the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins