Featured Research

from universities, journals, and other organizations

Study reveals new molecular target for melanoma treatment

Date:
August 17, 2012
Source:
University of North Carolina Health Care
Summary:
A laboratory study demonstrates how a new targeted drug, Elesclomol, blocks oxidative phosphorylation, which appears to play essential role in melanoma that has not been well understood. Elesclomol was previously shown to have clinical benefit only in patients with normal serum lactate dehydrogenase, a laboratory test routinely used to assess activity of disease.

A laboratory study led by UNC medical oncologist Stergios Moschos, MD, demonstrates how a new targeted drug, Elesclomol, blocks oxidative phosphorylation, which appears to play essential role in melanoma that has not been well-understood. Elesclomol (Synta Pharmaceuticals, Lexington, MA) was previously shown to have clinical benefit only in patients with normal serum lactate dehydrogenase (LDH), a laboratory test routinely used to assess activity of disease.

For more than 60 years, scientists have known that cancer cells undergo glycolysis, or metabolize glucose, at a much higher rate than normal cells. The observation, called the Warburg effect, demonstrated that the normal energy producing processes in the cell are disrupted in cancer cells, preventing them from using metabolic pathways in the cell's mitochondria (often called the cell's "power plants").

Recently, however, increasing evidence suggests that, in addition to glycolysis, other metabolic pathways may also play a role in cancer, with important therapeutic implications. A promising strategy for targeting cancer cells, while sparing normal cells, is to target these altered metabolic processes with drug therapies. Elesclomol has been shown to trigger cell death in metastatic melanoma cells, primarily by suppressing oxidative phosphorylation -- the process that cells use to transform nutrients into energy.

Moschos and his team demonstrated in the lab that metastatic melanoma cells exhibit a higher rate of glycolysis compared to their normal counterpart cells, termed melanocytes, which would be expected due to the Warburg effect.

"But we also found, surprisingly, that these cells have higher rates of oxidative phosphorylation -- they are producing energy through more than one pathway, which explains a lot about how the drug works," says Dr. Moschos.

He notes that this drug has an interesting history. In a 600-patient phase III clinical trial conducted almost 4 years ago, Elesclomol had clinical benefit in the subgroup of patients with normal serum LDH. However, the FDA discontinued the trial, because the Elesclomol in combination with another chemotherapeutic drug may have negative effects in patients with high serum LDH, which is associated with poorer patient outcomes in metastatic melanoma. At the time, very little was known about Elesclomol's mechanism of action -- blocking oxidative phosphorylation.

"Our inability to show how Elesclomol worked through measurement of biomarkers was the major driver to conduct this laboratory study," said Moschos, whose team took the clinical trial results back to the lab to try to figure out why the drug worked.

"Our results suggest that targeting oxidative phosphorylation in melanoma is a promising strategy for early metastatic disease, before melanoma cells switch their primary metabolic source to glycolysis, as Otto Warburg showed 60 years ago" said Dr. Moschos.

"Second, we were able to demonstrate a mechanism of resistance to Elesclomol, where long-term exposure to the drug leads to the selection of melanoma cells with high levels of glycolysis. This suggests that a two-pronged strategy aimed at blocking both metabolic pathways may be called for."

The results of the study were published August 17 in the journal Public Library of Science One.


Story Source:

The above story is based on materials provided by University of North Carolina Health Care. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina Health Care. "Study reveals new molecular target for melanoma treatment." ScienceDaily. ScienceDaily, 17 August 2012. <www.sciencedaily.com/releases/2012/08/120817203919.htm>.
University of North Carolina Health Care. (2012, August 17). Study reveals new molecular target for melanoma treatment. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/08/120817203919.htm
University of North Carolina Health Care. "Study reveals new molecular target for melanoma treatment." ScienceDaily. www.sciencedaily.com/releases/2012/08/120817203919.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins