Featured Research

from universities, journals, and other organizations

Ultra low power analog-to-digital converter for medical devices and wireless sensor nodes

Date:
August 20, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Researchers have developed an analog-to-digital converter (ADC) that uses only 400 nW, the lowest power consumption reported to date amongst today's standard processing technology.

Researchers from A*STAR IME have developed an analog-to-digital converter (ADC) that uses only 400 nW, the lowest power consumption reported to date amongst today's standard processing technology.

The novel converter design decreases the total power consumption of an implantable 100-channel neural recording microsystem by more than 20%, reducing the patient's exposure to electromagnetic radiation in the brain tissue when powered wirelessly during the data acquisition of complex brain activity for medical purposes. The converter can also prolong the battery life of other wearable and implantable medical devices and wireless sensor nodes. The ability to extend the battery life and reduce the electromagnetic radiation exposure from implantable devices will significantly reduce the patient's cost, risk and invasiveness of the surgical procedures involved. Neuroprosthetics, which serve to restore motor functions in paralysed patients due to impaired nervous systems, can potentially benefit from IME's low power ADC technology.

Elaborating on the research breakthrough, Dr Cheong Jia Hao, the IME scientist who conceptualised and designed the converter integrated circuits (ICs), said, "The ADC employs a tri-level switching scheme to achieve an elegant and simplified digital logic design. By reducing the capacitor charging voltage and the number of complex arithmetic steps in each data conversion cycle, we can boost the energy efficiency to just 19.5 fJ per conversion step, which contributes to significant total power savings without sacrificing data resolution and affecting other hardware features." The converter is fabricated with 0.18 micrometre CMOS processes, a mature standard processing technology for large volume production.

Professor Dim-Lee Kwong, Executive Director of IME, said, "IME's data converter is in synergy with industry's roadmap to drive energy efficient and sustainable solutions. The power saving highlight in the new technology can also be harnessed for applications that require intensive data conversion and where ultra low power consumption is paramount. The ultra low power converter will become one of the key elements in emerging wireless sensor networks, sensor clouds, and sensor fusion for various important applications such as environmental monitoring, industrial monitoring and control, green buildings, smart transportation, and e-health."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Ultra low power analog-to-digital converter for medical devices and wireless sensor nodes." ScienceDaily. ScienceDaily, 20 August 2012. <www.sciencedaily.com/releases/2012/08/120820121228.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, August 20). Ultra low power analog-to-digital converter for medical devices and wireless sensor nodes. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2012/08/120820121228.htm
The Agency for Science, Technology and Research (A*STAR). "Ultra low power analog-to-digital converter for medical devices and wireless sensor nodes." ScienceDaily. www.sciencedaily.com/releases/2012/08/120820121228.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins