Featured Research

from universities, journals, and other organizations

Long-standing chemistry mystery cracked

Date:
August 22, 2012
Source:
DOE/Ames Laboratory
Summary:
Chemists have answered a key question concerning the widely-used Fenton reaction – important in wastewater treatment to destroy hazardous organic chemicals and decontaminate bacterial pathogens and in industrial chemical production.

A team of researchers at the U.S. Department of Energy's Ames Laboratory has answered a key question concerning the widely-used Fenton reaction -- important in wastewater treatment to destroy hazardous organic chemicals and decontaminate bacterial pathogens and in industrial chemical production. The naturally occurring reaction was first discovered in 1894 by H.J.H. Fenton, a British chemist at Cambridge, and involves hydrogen peroxide (H2O2) and iron.

Related Articles


How the Fenton reaction actually happens has remained in contention. Scientists have long debated whether it was a hydroxyl (OH) radical or a form of iron known as the ferryl ion, [Fe(IV)O]2+, that functioned as the reaction intermediate for the Fenton reaction, with data to support both theories.

Now, Andreja Bakac and Oleg Pestovsky, scientists at Ames Laboratory in the Division of Chemical and Biological Sciences, and chemistry graduate student Hajem Bataineh, have proved that the reaction can take different paths depending on the pH of the reaction environment. In an acidic environment, the intermediate is an OH radical; at neutral pH, the intermediate is the ferryl ion.

"This is enormous when you think about all the work that went into trying to solve this issue when the acidity of the solution was not considered as a parameter. It certainly varied from one work to the next, and may explain the confusion that grew out of contradicting results in the literature," said Bakac.

So, is the reaction fundamental? Yes. Simple? No. The exact nature of the mechanism of the Fenton reaction has eluded science for decades, and has been all that time a subject of close inquiry -- and debate.

"The reaction takes place between iron which is widespread on Earth, and hydrogen peroxide which is derived from oxygen and also present almost everywhere on this planet. You know you are facing a real challenge when the reaction between two very common compounds has not been fully explained in a hundred years, despite all the efforts," said Bakac.

Over those past hundred years, the Fenton intermediates were reduced to two, the hydroxyl radical or the ferryl ion.

Much was known already about hydroxyl radicals. However, it wasn't until 2005 that Bakac's research group, in collaboration with groups at Carnegie Mellon and University of Minnesota, was able to directly characterize the ferryl ion and study its reactions. This gave them the ability to compare the two potential intermediates.

"We found that these two species, in many of the reactions, behave pretty much the same, which would make it very difficult to distinguish between them," explained Bakac of the earlier research. "The breakthrough came with some unique reactions that one intermediate will do and the other one will not, or where the products were different, and that gave us the key.

"We were thrilled to obtain a clear and unambiguous answer. The intermediate was the OH radical, and not the ferryl ion. We published the paper, we had a write up in Chemical and Engineering News; this was very exciting."

But the question still didn't seem settled. Other scientists continued to assert that ferryl was the intermediate.

"We thought how can this be? We just proved that it isn't. There were also some theoretical papers that came out at the time, also supporting the ferryl ion."

The continued debate prompted Bakac and her research partners to look at the potential effect of reaction conditions, specifically the acidity of the solution. That led to the discovery that either intermediate can be involved, depending on the pH of the reaction environment.

The discovery not only solves a long-running debate in academic chemistry, it opens up possibilities for new ways to use the reaction.

"If we can understand fully what's going on, then we can take advantage of that understanding and develop new uses for the Fenton reaction," said Bakac.

The discovery could lead to catalytic reactions using widely available iron in neutral conditions, and environmentally friendlier processes in everything from wastewater treatment to industrial oxidations.

"It becomes not just a better understood reaction, but a more useful one from a practical standpoint," said Bakac.

The findings were published in the journal Chemical Science and co-authored by Bakac, Pestovsky and Bataineh.


Story Source:

The above story is based on materials provided by DOE/Ames Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hajem Bataineh, Oleg Pestovsky, Andreja Bakac. pH-induced mechanistic changeover from hydroxyl radicals to iron(iv) in the Fenton reaction. Chemical Science, 2012; 3 (5): 1594 DOI: 10.1039/C2SC20099F

Cite This Page:

DOE/Ames Laboratory. "Long-standing chemistry mystery cracked." ScienceDaily. ScienceDaily, 22 August 2012. <www.sciencedaily.com/releases/2012/08/120822125034.htm>.
DOE/Ames Laboratory. (2012, August 22). Long-standing chemistry mystery cracked. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2012/08/120822125034.htm
DOE/Ames Laboratory. "Long-standing chemistry mystery cracked." ScienceDaily. www.sciencedaily.com/releases/2012/08/120822125034.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins