Featured Research

from universities, journals, and other organizations

An open platform improves biomedical-image processing

Date:
August 31, 2012
Source:
Plataforma SINC
Summary:
A new open source platform allows for application sharing as a way of improving biomedical-image processing. Fiji has become a de facto standard that assists laboratories and microscope companies in their development of more precise products, researchers involved in the work say.

Ignacio Arganda, a young researcher from San Sebastiαn de los Reyes (Madrid) working for the Massachusetts Institute of Technology (MIT) is one of the driving forces behind Fiji, an open source platform that allows for application sharing as a way of improving biomedical-image processing.
Credit: MIT

Ignacio Arganda, a young researcher from San Sebastiαn de los Reyes (Madrid) working for the Massachusetts Institute of Technology (MIT) is one of the driving forces behind Fiji, an open source platform that allows for application sharing as a way of improving biomedical-image processing. Arganda explains that Fiji, which has enjoyed the voluntary collaboration of some 20 developers from all over the world, has become a de facto standard that assists laboratories and microscope companies in their development of more precise products.

Ignacio Arganda is a postdoctoral researcher at the Laboratory of Computational Neuroscience of the Massachusetts Institute of Technology (MIT). Along with a group of researchers he implemented Fiji , a platform that allows for applications to be shared in order to improve and advance in the processing and analysis of biomedical imaging. "All of this in open source," outlines Arganda.

The platform was built from a previous one, ImageJ , which was well known in the industry at the time. ImageJ was not an open source platform but it was publicly accessible. According to Arganda, it had the advantage that any person working in medical imaging could easily create small software applications to resolve their particular problems and then incorporate it into the platform by means of a plug-in (an application which is linked to another providing a new or specific function).

Nonetheless, the researcher adds that this platform became too chaotic with applications of all kinds, some of which were not related to biomedical-imaging. It also began being used to handle astronomical images, in video tracking, etc. "There was a significant lack of control and structure," he says.

Therefore, "in a spontaneous manner and without any help" this group of researchers decided to create the new open source platform that could put order to that already in place, reusing what was of interest and useful in their work.

"We created a webpage organised like Wikipedia where people could contribute and use their knowledge to help others. To our surprise, it became very popular," he ensures. According to Ignacio Aranda, Fiji currently has 127,000 unique visits (20,000 each month).

The de facto standard

"The users of the platform with their contributions are a great attribute and this drives others to share their source code. Therefore, Fiji has become a de facto standard in the biomedical-imaging sector" outlines Arganda.

"This was our objective because the majority of those that participate in this project have been working for years in the field of medical imaging and we found ourselves too frequently faced with articles making reference to a fantastic method for processing images. In the end though, it was not possible to verify whether or not it was true because the technique was associated with software that was not provided and some images were not even accessible."

At the moment there are 20 developers across the whole world who are working voluntarily on improving the platform. "All of them are scientists who are working on their own projects and use the platform because it is more comfortable and they find it more interesting," adds Arganda.

The scientists behind Fiji got in contact with Arganda because of his doctoral thesis. "I was working on a project involving the study of mammary gland development and breast cancer in mice and I had a few tissue samples. I began to develop a programme for elastic image alignment that would allow me to create a 3D reconstruction. They expressed their interest and called asking me to collaborate in the platform."

In the eyes of the researcher, this is an example of what lies within Fiji. Arganda now works on automatic learning systems aimed at recognising the edges of neurons from electronic microscope images in the MIT Laboratory of Computational Neuroscience. The developed applications have also been introduced into the platform.

The researcher believes that the success of Fiji is also changing the way that biomedical-imaging companies are behaving. These include microscope firms with large laboratories. "These companies recognise the platform as a high quality standard and they are aware of their two options: either compete or collaborate with Fiji. They can create and maintain their own plug-in that works in the platform and they can then sell them if they become very specific.

"In my case for example, I was contacted by a microscope company because they were using my elastic image alignment programme to correct deformations in their microscopes. They asked me for a specific version of the programme, but I had developed it during my thesis so it could not be sold easily. In the end we reached an agreement for its use under the one condition that they would communicate any improvement made so that it could be introduced as open-source and uploaded onto the platform.

Ignacio Arganda is currently completing his postdoctoral fellowship in the MIT Laboratory of Computational Neuroscience under the supervision of the well known scientist Sebastian Seung, one of the leaders of the Connectome Project. This initiative aims to create a map of all the brain's neuron connections using an online application called eyewire.org , which is open to public participation.

Arganda is in charge of developing artificial intelligence programmes that automatically recognise neuron's edges and are then able to reconstruct wiring in the brain.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker Hartenstein, Kevin Eliceiri, Pavel Tomancak, Albert Cardona. Fiji: an open-source platform for biological-image analysis. Nature Methods, 2012; 9 (7): 676 DOI: 10.1038/nmeth.2019

Cite This Page:

Plataforma SINC. "An open platform improves biomedical-image processing." ScienceDaily. ScienceDaily, 31 August 2012. <www.sciencedaily.com/releases/2012/08/120831083311.htm>.
Plataforma SINC. (2012, August 31). An open platform improves biomedical-image processing. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/08/120831083311.htm
Plataforma SINC. "An open platform improves biomedical-image processing." ScienceDaily. www.sciencedaily.com/releases/2012/08/120831083311.htm (accessed April 23, 2014).

Share This



More Computers & Math News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) — A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) — The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) — Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins