Featured Research

from universities, journals, and other organizations

Robotic exoskeletal device: Preliminary research findings for Ekso in spinal cord injury

Date:
September 5, 2012
Source:
Kessler Foundation
Summary:
Preliminary research findings have been released from a clinical study of the wearable robotic exoskeletal device, Ekso (Ekso Bionics). Initial results are promising for the potential application of Ekso-assisted walking in rehabilitation, in exercise/wellness programs, in the community and for home use.

Preliminary research findings have been released from a clinical study of the wearable robotic exoskeletal device, Ekso (Ekso Bionics). Initial results are promising for the potential application of Ekso-assisted walking in rehabilitation, in exercise/wellness programs, in the community and for home use.
Credit: Image courtesy of Kessler Foundation

Preliminary research findings have been released from a clinical study of the wearable robotic exoskeletal device, Ekso (Ekso Bionics). Initial results are promising for the potential application of Ekso-assisted walking in rehabilitation, in exercise/wellness programs, in the community and for home use.

Kessler Foundation has released preliminary research findings from its clinical study of the wearable robotic exoskeletal device, Ekso (Ekso Bionics). Gail Forrest, PhD, assistant director of Human Performance and Engineering Research, presented the Ekso research data on September 3, at the meeting of the Academy of Spinal Cord Injury Professionals at the Rio Suites in Las Vegas. Dr. Forrest directs mobility research at the Foundation, including activity-based locomotor therapy, functional electrical stimulation, and treadmill training with the LokomatPro v6, as well as Ekso. Her research focuses on new ways to improve function and restore mobility for people with disabilities and reduce their long-term risks for complications.

Ekso, has been undergoing clinical investigation in patients with spinal cord injury at Kessler since October 2011, when the research team received the second commercial unit distributed by Ekso Bionics. "Our initial research results are promising for the potential application of Ekso-assisted walking in rehabilitation, in exercise/wellness programs, in the community and for home use," said Dr. Forrest.

Dr. Forrest not only studies the mechanics of how people with paralysis stand and walk in Ekso, she looks at the impact of these activities on their muscles, hearts and lungs. Long-term studies are needed to evaluate the effects on common secondary complications such as cardiovascular disease, loss of bone and muscle, pressure ulcers, depression, chronic pain, and loss of bladder/bowel control.

Dr. Forrest reported on data collected in 13 patients (12 with paraplegia and 1 with tetraplegia) with spinal cord injury (complete and incomplete injuries) enrolled in the Ekso study. Thus far, walking and standing with Ekso is feasible for people with a range of spinal cord disorders that cause paraplegia. Individuals with higher levels of spinal cord injury may also benefit, but require more time to learn Ekso-assisted walking.

Gait and balance data indicate positive results/progress, ie, for individuals engaging in Ekso-assisted training sessions, walking speed and distance, fluidity, gait and balance improve with training on the exoskeleton. Metabolic and cardiovascular responses were evidenced by increases in oxygen consumption, ventilation and heart rate. These increases occurred with changes from resting to standing position and increased further with changes from standing to walking. Dr. Forrest confirmed this effect by comparing the responses of a patient skilled at Ekso-assisted walking (30 sessions of training) with those of a novice walker. Oxygen consumption returned to baseline much faster in the skilled walker, indicating a training effect. "These are only preliminary data," emphasized Dr. Forrest. "The mechanisms underlying these responses need further investigation. These findings are indicative of potential benefits for the heart, lungs, and the circulation, an important finding in this high-risk population."

Another interesting finding was increased muscle firing in the lower leg muscles during Ekso-assisted walking. More detailed research is also needed to evaluate the potential health benefits of this muscle activity, according to Dr. Forrest.

Advances in engineering are enabling advances in Ekso research. Auto-control for greater flexibility and maximal independence is a new feature in the upgraded device being tested at Kessler Foundation. Data collection is now automated, which will aid the expansion of Ekso's capabilities in the future.


Story Source:

The above story is based on materials provided by Kessler Foundation. Note: Materials may be edited for content and length.


Cite This Page:

Kessler Foundation. "Robotic exoskeletal device: Preliminary research findings for Ekso in spinal cord injury." ScienceDaily. ScienceDaily, 5 September 2012. <www.sciencedaily.com/releases/2012/09/120905111148.htm>.
Kessler Foundation. (2012, September 5). Robotic exoskeletal device: Preliminary research findings for Ekso in spinal cord injury. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/09/120905111148.htm
Kessler Foundation. "Robotic exoskeletal device: Preliminary research findings for Ekso in spinal cord injury." ScienceDaily. www.sciencedaily.com/releases/2012/09/120905111148.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins