Featured Research

from universities, journals, and other organizations

Martian clays were not all formed by the action of liquid water

Date:
September 10, 2012
Source:
Centre national de la recherche scientifique (CNRS)
Summary:
Discovered in 2005, the clays of the southern hemisphere of Mars are often considered to be evidence for the existence of liquid water on the planet at a period in the very distant past between 4.5 and 4 billion years ago. However, work carried out by a French-US team calls this interpretation into question.

Particles of clay cover the surfaces of crystals in the subaerial basalt flow of the Mururoa Guyot (French Polynesia). Similar clays may have formed in the basaltic rocks of the Noachian crust on Mars (in yellow) which were probably not totally degassed. They could not have formed in Hesperian rocks (in green) which were totally degassed.
Credit: ฉ A. Meunier and S. Riffaut

Discovered in 2005, the clays of the southern hemisphere of Mars are often considered to be evidence for the existence of liquid water on the planet at a period in the very distant past between 4.5 and 4 billion years ago. However, work carried out by a French-US team led by researchers at the Institut de Chimie des Milieux et Mat้riaux in Poitiers (CNRS/Universit้ de Poitiers) calls this interpretation into question.

Related Articles


In an article to be published Sept. 9 online in the journal Nature Geoscience, they show that these clays were probably of magmatic origin. The many similarities between these Martian clays and clays of volcanic origin collected on the Mururoa Atoll support this hypothesis.

Mars' oldest rocks are found in its southern hemisphere: the crust of this region formed between 4.5 and 4 billion years ago. It is there that iron- and magnesium-rich clays were discovered in 2005. The presence of this type of mineral, considered to have originated from the decomposition of rocks through the action of liquid water, was interpreted as indicating that water was present on the Martian surface in the distant past. However, a team of researchers has shown that these clays are probably of magmatic origin.

To lend weight to their hypothesis, the researchers studied basalts from the Mururoa Atoll (French Polynesia). These basalts are composed of well-formed crystals between which there are small spaces filled with a finely-crystallized material called mesostasis. This contains ferro-magnesian clays similar to those detected on Mars. The researchers have shown that these clays formed from residual water-rich magmatic liquids trapped in the empty spaces between the crystals. When the magma finally cooled, the constituents of these residual fluids precipitated, forming various minerals including clays. In this case, no aqueous alteration took place.

The scientists noticed that the Martian magma fulfilled all the conditions, in particular a high water and chlorine content, for this process to have been able to produce abundant clays on the basaltic surface of Mars. In addition, it is known that shortly after Mars' formation it was covered by a magma ocean, just like the early Earth. During this period clays could have formed. On top of this, they also showed that the infrared spectrum of the Martian clays measured by the orbiters Mars Express and Mars Reconnaissance Orbiter is identical to that of the Mururoa clays.

This work may have repercussions on the search for indicators of life on Mars. Although the presence of liquid water around 3 billion years ago is attested to by traces of rivers, lakes and alluvial fans, there is nothing to suggest that it existed at periods as remote as 4.5 to 4 billion years ago, as believed until now. The period of time favorable to the emergence of life on Mars may have been much shorter than thought. The Curiosity mission, which will explore part of the Gale crater on Mars, whose sedimentary formations are evidence of the presence of liquid water at a much more recent period, should make it possible to clear up a certain number of doubts.


Story Source:

The above story is based on materials provided by Centre national de la recherche scientifique (CNRS). Note: Materials may be edited for content and length.


Journal Reference:

  1. Alain Meunier, Sabine Petit, Bethany L. Ehlmann, Patrick Dudoignon, Frances Westall, Antoine Mas, Abderrazak El Albani, Eric Ferrage. Magmatic precipitation as a possible origin of Noachian clays on Mars. Nature Geoscience, 2012; DOI: 10.1038/ngeo1572

Cite This Page:

Centre national de la recherche scientifique (CNRS). "Martian clays were not all formed by the action of liquid water." ScienceDaily. ScienceDaily, 10 September 2012. <www.sciencedaily.com/releases/2012/09/120910142705.htm>.
Centre national de la recherche scientifique (CNRS). (2012, September 10). Martian clays were not all formed by the action of liquid water. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2012/09/120910142705.htm
Centre national de la recherche scientifique (CNRS). "Martian clays were not all formed by the action of liquid water." ScienceDaily. www.sciencedaily.com/releases/2012/09/120910142705.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Space & Time News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) — Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) — Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com
Lunar Mission One Could Send Your Hair to The Moon

Lunar Mission One Could Send Your Hair to The Moon

Buzz60 (Nov. 19, 2014) — A British-led venture called Lunar Mission One plans to send a module to the moon with keepsakes from Earth. Vanessa Freeman (@VanessaFreeTV) tells you how to get your photos and DNA onboard. Video provided by Buzz60
Powered by NewsLook.com
Why A Russian Object Is Being Called A 'Satellite Killer'

Why A Russian Object Is Being Called A 'Satellite Killer'

Newsy (Nov. 18, 2014) — An unidentified Russian spacecraft is getting some attention, with some saying it could be for research while others say it could be a weapon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins