Featured Research

from universities, journals, and other organizations

Study explains decrease in insulin-producing beta cells in diabetes

Date:
September 13, 2012
Source:
Columbia University Medical Center
Summary:
Scientists generally think that reduced insulin production by the pancreas, a hallmark of type 2 diabetes, is due to the death of the organ’s beta cells. However, a new study shows that beta cells do not die but instead revert to a more fundamental, undifferentiated cell type. The findings suggest that strategies to prevent beta cells from de-differentiating, or to coax them to re-differentiate, might improve glucose balance in patients with type 2 diabetes.

The life cycle of transcription factor FoxO1 closely mirrors the state of health of the pancreatic beta cell. In a healthy cell, FoxO1 (stained red) is inactive and co-localizes with insulin (green) in the cytoplasm, giving rise to yellow color (left panel). In early diabetes, stress caused by elevated blood glucose is counteracted by the movement of FoxO1 to the nucleus, which allows cells to continue to produce insulin (middle panel). But if stress persists, this mechanism fails, in which case FoxO1 is degraded and insulin production ceases, giving rise to dedifferentiated beta cells (right panel).
Credit: Chutima Talchai, PhD/Columbia University Medical Center

Scientists generally think that reduced insulin production by the pancreas, a hallmark of type 2 diabetes, is due to the death of the organ's beta cells. However, a new study by Columbia University Medical Center (CUMC) researchers shows that beta cells do not die but instead revert to a more fundamental, undifferentiated cell type. The findings suggest that strategies to prevent beta cells from de-differentiating, or to coax them to re-differentiate, might improve glucose balance in patients with type 2 diabetes.

The study, conducted in mice was published today in the online edition of the journal Cell.

"The prevailing theory is that the death of beta cells is responsible for the decline in insulin production in type 2 diabetes," said study leader Domenico Accili, MD, professor of Medicine and the Russell Berrie Foundation Professor at CUMC. "But when you look at a diabetic pancreas, you find very few, if any, dead beta cells. So, the organ dysfunction is out of proportion with the number of dead cells. Nobody has had a plausible explanation for this."

Dr. Accili and co-author Chutima Talchai, PhD, suspected that some answers might lie in the activity of FoxO1 protein. FoxO1 -- a transcription factor, or protein that controls when genes are switched on or off -- serves as a kind of gauge of the body's nutritional status. When a cell is well nourished, FoxO1 is inactive and stays in the cell body, or cytoplasm. In the face of a physiologic stress, such as high blood sugar, FoxO1 travels to the nucleus and ultimately disappears. "The starting point of our study was to ask, why does FoxO1 go to the nucleus in the early phases of diabetes, and is the decrease in FoxO1 a cause of diabetes or a consequence?" said Dr. Accili.

To address these questions, Dr. Talchai created a strain of mice whose beta cells lack FoxO1. Initially, the mice appeared normal, but after a physiologic stress, such as pregnancy or aging, the mice developed low levels of insulin and high levels of glucagon (a pancreatic hormone that counters the effects of insulin) -- responses also seen in human diabetes.

The researchers then used a novel form of cell-lineage tracing to find out what happened to the beta cells. "To our surprise, we found that the beta cells had not disappeared but had changed into a different cell type. They had sort of walked back from fully committed insulin-making cells to an uncommitted progenitor-like, multipotent development stage," said Dr. Accili. In addition, some of the beta cells became glucagon-producing cells, which would explain why people with diabetes have abnormally high glucagon levels. The same changes in beta cells were observed in other mouse models of diabetes.

"Our findings tell us that FoxO1 is necessary to maintain the identity of beta cells," said Dr. Accili. "During metabolic stress, beta cells gradually lose FoxO1 and begin to de-differentiate, probably as a self-protective mechanism."

The study has important implications for the treatment of type 2 diabetes. "Currently, we give patients medications that force beta cells to work even harder," said Dr. Accili. "But it's like flogging a dying horse. You can push beta cells only so far. Our findings would suggest that treatment should begin by giving beta cells a rest, by administering insulin. Then, we should give an agent that promotes the re-differentiation of beta cells. What that agent could be, we don't know; but we do have some inkling from our work that certain signaling pathways, such as the wnt or notch pathways, could be targeted for this purpose."

The study is titled, "Pancreatic B-Cell Dedifferentiation As Mechanism Of Diabetic B-Cell Failure." Contributors are Domenico Accili (CUMC), Chutima Talchai (CUMC and Chulalongkorn University, Bangkok, Thailand), Shouhong Xuan (CUMC), Hua V. Lin (Eli Lilly China Laboratories, Shanghai, People's Republic of China), and Lori Sussel (CUMC). Dr. Talchai is a postdoctoral research scientist at CUMC and a New York Stem Cell Foundation-Druckenmiller Fellow.

The study was supported by grants from the Druckenmiller Fellowship of the New York Stem Cell Foundation, the National Institutes of Health (DK64819, DK58282, and DK63608), the Brehm Coalition, and the Russell Berrie Foundation.

The authors have filed a patent for an assay that can distinguish normal cells from de-differentiated cells. The authors declare no other financial or other conflicts of interest.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chutima Talchai, Shouhong Xuan, HuaV. Lin, Lori Sussel, Domenico Accili. Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure. Cell, 2012; 150 (6): 1223 DOI: 10.1016/j.cell.2012.07.029

Cite This Page:

Columbia University Medical Center. "Study explains decrease in insulin-producing beta cells in diabetes." ScienceDaily. ScienceDaily, 13 September 2012. <www.sciencedaily.com/releases/2012/09/120913122832.htm>.
Columbia University Medical Center. (2012, September 13). Study explains decrease in insulin-producing beta cells in diabetes. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/09/120913122832.htm
Columbia University Medical Center. "Study explains decrease in insulin-producing beta cells in diabetes." ScienceDaily. www.sciencedaily.com/releases/2012/09/120913122832.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins