Featured Research

from universities, journals, and other organizations

Research uncovers path to defect-free thin films

Date:
September 20, 2012
Source:
DOE/Oak Ridge National Laboratory
Summary:
Scientists have discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic sensors and a host of energy-related materials.

A team led by Oak Ridge National Laboratory's Ho Nyung Lee has discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic sensors and a host of energy-related materials.

The finding, published in Nano Letters, could change the conventional wisdom that accommodating the strain inherent during the formation of epitaxial thin films necessarily involves structural defects, said Lee, a member of the Department of Energy lab's Materials Science and Technology Division. Instead, the researchers found that some materials, in this case cobaltite, form structurally well ordered atomic patterns that can change their magnetic properties and effectively minimize the size mismatch with the crystalline substrate.

Epitaxial thin films, used in nanotechnology and semiconductor fabrication, are created by growing a crystal layer of one material on another in such a way that the crystalline structures align. The challenge is to grow the film coherently with minimal defects, which can have a catastrophic effect on a material's performance.

"We discovered properties that were not readily apparent in crystal, or bulk, form, but in thin-film form we were able to clearly see the atomically ordered lattice structure of lanthanum cobaltite," Lee said. "With this knowledge, we hope to be able to tailor the physical properties of a material for many information and energy technologies."

The researchers studied the material in different strain states using scanning transmission electron microscopy complemented by X-ray and optical spectroscopy. Using these instruments, the scientists could see unconventional strain relaxation behavior that produced stripe-like lattice patterns. The result is a material with useful magnetic properties and highly suitable for sensors and ionic conductors used in, for example, batteries.

This discovery and the ability to engineer the structure of materials could lead to advanced cathode materials in solid oxide fuel cells and batteries that can be charged much faster.

"Since cobaltites are promising candidates for magnetic sensors, ionic conductors and surface catalysts, this discovery provides a new understanding that can be used for artificial tuning of magnetism and ionic activities," Lee said.

Contributing to the paper were ORNL's Woo Seok Choi and Hyoungjeen Jeen and authors from Seoul National University, the University of British Columbia, IFW Dresden's Leibniz Institute for Solid Sate and Materials Research, Max Planck-UBC Centre for Quantum Materials, Max Planck Institute for Solid State Research and the University of Saskatchewan.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Woo Seok Choi, Ji-Hwan Kwon, Hyoungjeen Jeen, Jorge E. Hamann-Borrero, Abdullah Radi, Sebastian Macke, Ronny Sutarto, Feizhou He, George A. Sawatzky, Vladimir Hinkov, Miyoung Kim, Ho Nyung Lee. Strain-Induced Spin States in Atomically Ordered Cobaltites. Nano Letters, 2012; 12 (9): 4966 DOI: 10.1021/nl302562f

Cite This Page:

DOE/Oak Ridge National Laboratory. "Research uncovers path to defect-free thin films." ScienceDaily. ScienceDaily, 20 September 2012. <www.sciencedaily.com/releases/2012/09/120920140200.htm>.
DOE/Oak Ridge National Laboratory. (2012, September 20). Research uncovers path to defect-free thin films. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/09/120920140200.htm
DOE/Oak Ridge National Laboratory. "Research uncovers path to defect-free thin films." ScienceDaily. www.sciencedaily.com/releases/2012/09/120920140200.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins