Featured Research

from universities, journals, and other organizations

Mechanism that leads to sporadic Parkinson's disease identified

Date:
September 25, 2012
Source:
Columbia University Medical Center
Summary:
Researchers have identified a mechanism that appears to underlie the common sporadic (non-familial) form of Parkinson’s disease, the progressive movement disorder. The discovery highlights potential new therapeutic targets for Parkinson’s and could lead to a blood test for the disease. The study was based mainly on analysis of human brain tissue.

Researchers in the Taub Institute at Columbia University Medical Center (CUMC) have identified a mechanism that appears to underlie the common sporadic (non-familial) form of Parkinson's disease, the progressive movement disorder. The discovery highlights potential new therapeutic targets for Parkinson's and could lead to a blood test for the disease. The study, based mainly on analysis of human brain tissue, was published September 25 in the online edition of Nature Communications.

Studies of rare, familial (heritable) forms of Parkinson's show that a protein called alpha-synuclein plays a role in the development of the disease. People who have extra copies of the alpha-synuclein gene produce excess alpha-synuclein protein, which can damage neurons. The effect is most pronounced in dopamine neurons, a population of brain cells in the substantia nigra that plays a key role in controlling normal movement and is lost in Parkinson's. Another key feature of Parkinson's is the presence of excess alpha-synuclein aggregates in the brain.

As the vast majority of patients with Parkinson's do not carry rare familial mutations, a key question has been why these individuals with common sporadic Parkinson's nonetheless acquire excess alpha-synuclein protein and lose critical dopamine neurons, leading to the disease.

Using a variety of techniques, including gene-expression analysis and gene-network mapping, the CUMC researchers discovered how common forms of alpha-synuclein contribute to sporadic Parkinson's. "It turns out multiple different alpha-synuclein transcript forms are generated during the initial step in making the disease protein; our study implicates the longer transcript forms as the major culprits," said study leader Asa Abeliovich, MD, PhD, associate professor of pathology and neurology at CUMC. "Some very common genetic variants in the alpha-synuclein gene, present in many people, are known to impact the likelihood that an individual will suffer from sporadic Parkinson's. In our study, we show that people with 'bad' variants of the gene make more of the elongated alpha-synuclein transcript forms. This ultimately means that more of the disease protein is made and may accumulate in the brain."

"An unusual aspect of our study is that it is based largely on detailed analysis of actual patient tissue, rather than solely on animal models," said Dr. Abeliovich. "In fact, the longer forms of alpha-synuclein are human-specific, as are the disease-associated genetic variants. Animal models don't really get Parkinson's, which underscores the importance of including the analysis of human brain tissue."

"Furthermore, we found that exposure to toxins associated with Parkinson's can increase the abundance of this longer transcript form of alpha-synuclein. Thus, this mechanism may represent a common pathway by which environmental and genetic factors impact the disease," said Dr. Abeliovich.

The findings suggest that drugs that reduce the accumulation of elongated alpha-synuclein transcripts in the brain might have therapeutic value in the treatment of Parkinson's. The CUMC team is currently searching for drug candidates and has identified several possibilities.

The study also found elevated levels of the alpha-synuclein elongated transcripts in the blood of a group of patients with sporadic Parkinson's, compared with unaffected controls. This would suggest that a test for alpha-synuclein may serve as a biomarker for the disease. "There is a tremendous need for a biomarker for Parkinson's, which now can be diagnosed only on the basis of clinical symptoms. The finding is particularly intriguing, but needs to be validated in additional patient groups," said Dr. Abeliovich. A biomarker could also speed clinical trials by giving researchers a more timely measure of a drug's effectiveness.

The study was supported by the grants from the Michael J. Fox Foundation, the National Institutes of Health, and the National Institute of Neurological Disorders and Stroke (RO1NS064433).


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Herve Rhinn, Liang Qiang, Toru Yamashita, David Rhee, Ari Zolin, William Vanti, Asa Abeliovich. Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology. Nature Communications, 2012; 3: 1084 DOI: 10.1038/ncomms2032

Cite This Page:

Columbia University Medical Center. "Mechanism that leads to sporadic Parkinson's disease identified." ScienceDaily. ScienceDaily, 25 September 2012. <www.sciencedaily.com/releases/2012/09/120925142559.htm>.
Columbia University Medical Center. (2012, September 25). Mechanism that leads to sporadic Parkinson's disease identified. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/09/120925142559.htm
Columbia University Medical Center. "Mechanism that leads to sporadic Parkinson's disease identified." ScienceDaily. www.sciencedaily.com/releases/2012/09/120925142559.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins