Featured Research

from universities, journals, and other organizations

Vehicle construction: Tape laying gets closer to series production

Date:
October 4, 2012
Source:
Fraunhofer-Gesellschaft
Summary:
New approaches are needed for vehicle construction. While vehicles to date have mostly been built using metals such as aluminum and steel, the approaching era of electromobility will require light-weight construction. That means that new materials must be found. Fiber-reinforced plastics offer significant potential. These are fibers that are impregnated with a plastic matrix and are utilized as composite materials. These materials offer a rigidity similar to that of metals.

Producing fiber-reinforced plastics using tape laying offers several advantages.
Credit: Copyright Fraunhofer ICT

New approaches are needed for vehicle construction. While vehicles to date have mostly been built using metals such as aluminum and steel, the approaching era of electromobility will require light-weight construction. That means that new materials must be found. Fiber-reinforced plastics offer significant potential. These are fibers that are impregnated with a plastic matrix and are utilized as composite materials. These materials offer a rigidity similar to that of metals.

In conventional processes, the patterns that are necessary for the component are cut from textile semi-finished goods – predominantly from woven materials. This process is often wasteful, generating clippings of the valuable reinforcement material. One alternative is tape laying. Tapes are uni-directional continuous fibers that are impregnated with a matrix and spooled onto a roll like a tape. These rolls are inserted into a tape laying machine, and a depositing unit places them into the desired geometry. This makes it possible to produce precisely fitting continuous-fiber structures with no or nearly no waste due to clippings. This process is still too slow, however, for high-volume component series such as those needed by automobile manufacturers for compact-class models.

Scientists at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, together with their colleagues from the Augsburg ICT Project Group, plan to bring tape laying a lot closer to series production. The two systems used by the scientists are products made by the Coriolis and Fiberforge companies. “We are developing further process-control technology around these systems,“ says Benjamin Hangs, a scientist at the ICT. “This includes, on the one hand, optimizing the systems in cooperation with the companies, and on the other hand, continuing to develop the process chain. It comprises fiber placement, reforming, functionalization and post-processing. For example, we are developing new material formulae, optimizing production parameters and developing prototypes.“ In doing so, the scientists dedicate themselves, among other things, to questions such as the best methods for producing various components, the process requirements involved and the quality standards that must be met. “We have already gained a wide range of knowledge that can help to further advance the process toward medium- and high-volume production and have produced a demonstrator,“ says Hangs.

Automotive manufacturers and the aerospace industry are very willing to take the next step here because, in addition to lower wastage, tape laying offers added benefits over semi-finished textile products. During the tape laying process the orientation of the fibers can be controlled as needed. The fibers can be oriented so that they can absorb a maximum of the stresses to which they are subjected. By contrast, in the case of semi-finished textiles combinations of angles of 0 and 90 degrees are predominantly used instead. Tape laying therefore enables the material to be used more efficiently. Since it is even sturdier as a composite, thinner material layers outperform semi-finished textiles. The scientists will be available for more detailed discussions in Hall 8a, Booth A11 at the Composites Europe trade fair from October 9 to 11, 2012, in Dόsseldorf, Germany.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Vehicle construction: Tape laying gets closer to series production." ScienceDaily. ScienceDaily, 4 October 2012. <www.sciencedaily.com/releases/2012/10/121004093249.htm>.
Fraunhofer-Gesellschaft. (2012, October 4). Vehicle construction: Tape laying gets closer to series production. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/10/121004093249.htm
Fraunhofer-Gesellschaft. "Vehicle construction: Tape laying gets closer to series production." ScienceDaily. www.sciencedaily.com/releases/2012/10/121004093249.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins