Featured Research

from universities, journals, and other organizations

Hi-fi single photons

Date:
October 4, 2012
Source:
Springer Science+Business Media
Summary:
A trade-off between photon source settings and detector specific requirements allows the generation of high-fidelity single photons. Many quantum technologies-such as cryptography, quantum computing and quantum networks-hinge on the use of single photons. Researchers have now identified the extent to which photon detector characteristics shape the preparation of a photon source designed to reliably generate single photons.

A trade-off between photon source settings and detector specific requirements allows the generation of high-fidelity single photons.

Many quantum technologies-such as cryptography, quantum computing and quantum networks-hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, Ιcole Normale Supιrieure and CNRS) in Paris, France, Virginia d'Auria and her colleagues identified the extent to which photon detector characteristics shape the preparation of a photon source designed to reliably generate single photons. In a paper about to be published in EPJ D, the French team determined the value of key source parameters that are necessary to generate high-fidelity single photons.

The problem with photon detectors is that they can be noisy or have a limited ability to detect single photons. Some cannot identify the number of photons; they can only detect their presence. Given the influence of these factors, improving the fidelity of single-photon generation is very challenging. But it is also crucial for their subsequent use in quantum information protocols, including quantum communication and computing.

Single photons are typically generated using two laser beams that are correlated at the quantum level. This means that the detection of a single photon in the first beam heralds the generation of a single photon in the second one.

The authors first reviewed how to describe a detector from a mathematical point of view. They then simulated which photons would be obtained from different initial sources. This led the team to outline the conditions under which the heralding detector can deliver good resolution of the number of photons, as a means of improving the reliability in obtaining single photons. They corroborated their findings using two experimental detectors.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. D’Auria, O. Morin, C. Fabre, J. Laurat. Effect of the heralding detector properties on the conditional generation of single-photon states. The European Physical Journal D, 2012; 66 (10) DOI: 10.1140/epjd/e2012-30351-6

Cite This Page:

Springer Science+Business Media. "Hi-fi single photons." ScienceDaily. ScienceDaily, 4 October 2012. <www.sciencedaily.com/releases/2012/10/121004093253.htm>.
Springer Science+Business Media. (2012, October 4). Hi-fi single photons. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/10/121004093253.htm
Springer Science+Business Media. "Hi-fi single photons." ScienceDaily. www.sciencedaily.com/releases/2012/10/121004093253.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins