Featured Research

from universities, journals, and other organizations

How order arises from the random motion of particles in the cosmos

Date:
October 5, 2012
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
One of the unsolved mysteries of contemporary science is how highly organized structures can emerge from the random motion of particles. This applies to many situations ranging from astrophysical objects that extend over millions of light years to the birth of life on Earth.

Plasmas stream from the top and bottom to form large-scale electromagnetic fields.
Credit: Image courtesy of DOE/Lawrence Livermore National Laboratory

One of the unsolved mysteries of contemporary science is how highly organized structures can emerge from the random motion of particles. This applies to many situations ranging from astrophysical objects that extend over millions of light years to the birth of life on Earth.

The surprising discovery of self-organized electromagnetic fields in counter-streaming ionized gases (also known as plasmas) will give scientists a new way to explore how order emerges from chaos in the cosmos. This breakthrough finding was published online in the journal, Nature Physics on Sept. 30.

"We've created a model for exploring how electromagnetic fields help organize ionized gas or plasma in astrophysical settings, such as in the plasma flows that emerge from young stars," said lead author Nathan Kugland, a postdoctoral researcher in the High Energy Density Science Group at Lawrence Livermore National Laboratory (LLNL). "These fields help shape the flows, and likely play a supporting role alongside gravity in the formation of solar systems, which can eventually lead to the creation of planets like the Earth."

"This observation was completely unexpected, since the plasmas move so quickly that they should freely stream past each other," explained Hye-Sook Park, team leader and staff physicist at LLNL. Park added that "laser-driven plasma experiments can study the microphysics of plasma interaction and structure formation under controlled conditions."

Studying astrophysics with laboratory experiments can help answer questions about astrophysical objects that are far beyond the reach of direct measurements. This research is being carried out as part of a large international collaboration, Astrophysical Collisionless Shock Experiments with Lasers (ACSEL), led by LLNL, Princeton University, Osaka University and Oxford University, with many other universities participating.

This work was performed at the OMEGA EP laser by the Lawrence Livermore National Laboratory. Additional support was provided by the LDRD program and the International Collaboration for High Energy Density Science (ICHEDS), supported by the Core-to-Core Program of the Japan Society for the Promotion of Science. The research leading to these results received funding from the European Research Council under the European Community's Seventh Framework Programme.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. L. Kugland, D. D. Ryutov, P-Y. Chang, R. P. Drake, G. Fiksel, D. H. Froula, S. H. Glenzer, G. Gregori, M. Grosskopf, M. Koenig, Y. Kuramitsu, C. Kuranz, M. C. Levy, E. Liang, J. Meinecke, F. Miniati, T. Morita, A. Pelka, C. Plechaty, R. Presura, A. Ravasio, B. A. Remington, B. Reville, J. S. Ross, Y. Sakawa, A. Spitkovsky, H. Takabe, H-S. Park. Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas. Nature Physics, 2012; DOI: 10.1038/nphys2434

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "How order arises from the random motion of particles in the cosmos." ScienceDaily. ScienceDaily, 5 October 2012. <www.sciencedaily.com/releases/2012/10/121005092939.htm>.
DOE/Lawrence Livermore National Laboratory. (2012, October 5). How order arises from the random motion of particles in the cosmos. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/10/121005092939.htm
DOE/Lawrence Livermore National Laboratory. "How order arises from the random motion of particles in the cosmos." ScienceDaily. www.sciencedaily.com/releases/2012/10/121005092939.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins