Featured Research

from universities, journals, and other organizations

Large water reservoirs at the dawn of stellar birth

Date:
October 9, 2012
Source:
European Space Agency (ESA)
Summary:
The European Space Agency's Herschel space observatory has discovered enough water vapor to fill Earth's oceans more than 2000 times over, in a gas and dust cloud that is on the verge of collapsing into a new Sun-like star. Stars form within cold, dark clouds of gas and dust -- 'pre-stellar cores' -- that contain all the ingredients to make solar systems like our own.

Close-up of L1544 with the water spectrum seen by Herschel, taken from the centre of the pre-stellar core. The peak of the graph shows an excess in brightness, or emission, while the trough shows a deficit, or absorption. These characteristics are used to indicate the density and motions of the water molecules within the cloud. Emission arises from molecules that are approaching the centre where the new star will form, from the back of the cloud from Herschel’s viewpoint. The amount of emission indicates that these molecules are moving within the densest part of the core, which spans about 1000 Astronomical Units. The absorption signature is due to water molecules in front of the cloud flowing away from the observer towards the centre. These water molecules are in less dense regions much further away from the centre. Together, the emission and absorption signatures indicate that the cloud is undergoing gravitational contraction, that is, it is collapsing to form a new star. Herschel detected enough water vapour in L1544 to fill Earth’s oceans more than 2000 times over.
Credit: ESA/Herschel/SPIRE/HIFI/Caselli et al.

The European Space Agency's Herschel space observatory has discovered enough water vapour to fill Earth's oceans more than 2000 times over, in a gas and dust cloud that is on the verge of collapsing into a new Sun-like star.

Stars form within cold, dark clouds of gas and dust -- 'pre-stellar cores' -- that contain all the ingredients to make solar systems like our own.

Water, essential to life on Earth, has previously been detected outside of our Solar System as gas and ice coated onto tiny dust grains near sites of active star formation, and in proto-planetary discs capable of forming alien planetary systems.

The new Herschel observations of a cold pre-stellar core in the constellation of Taurus known as Lynds 1544 are the first detection of water vapour in a molecular cloud on the verge of star formation.

More than 2000 Earth oceans-worth of water vapour were detected, liberated from icy dust grains by high-energy cosmic rays passing through the cloud.

"To produce that amount of vapour, there must be a lot of water ice in the cloud, more than three million frozen Earth oceans' worth," says Paola Caselli from the University of Leeds, UK, lead author of the paper reporting the results in Astrophysical Journal Letters.

"Before our observations, the understanding was that all the water was frozen onto dust grains because it was too cold to be in the gas phase and so we could not measure it.

"Now we will need to review our understanding of the chemical processes in this dense region and, in particular, the importance of cosmic rays to maintain some amount of water vapour."

The observations also revealed that the water molecules are flowing towards the heart of the cloud where a new star will probably form, indicating that gravitational collapse has just started.

"There is absolutely no sign of stars in this dark cloud today, but by looking at the water molecules, we can see evidence of motion inside the region that can be understood as collapse of the whole cloud towards the centre," says Dr Caselli.

"There is enough material to form a star at least as massive as our Sun, which means it could also be forming a planetary system, possibly one like ours."

Some of the water vapour detected in L1544 will go into forming the star, but the rest will be incorporated into the surrounding disc, providing a rich water reservoir to feed potential new planets.

"Thanks to Herschel, we can now follow the 'water trail' from a molecular cloud in the interstellar medium, through the star formation process, to a planet like Earth where water is a crucial ingredient for life," says ESA's Herschel project scientist, Gφran Pilbratt.


Story Source:

The above story is based on materials provided by European Space Agency (ESA). Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency (ESA). "Large water reservoirs at the dawn of stellar birth." ScienceDaily. ScienceDaily, 9 October 2012. <www.sciencedaily.com/releases/2012/10/121009111238.htm>.
European Space Agency (ESA). (2012, October 9). Large water reservoirs at the dawn of stellar birth. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/10/121009111238.htm
European Space Agency (ESA). "Large water reservoirs at the dawn of stellar birth." ScienceDaily. www.sciencedaily.com/releases/2012/10/121009111238.htm (accessed April 17, 2014).

Share This



More Space & Time News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) — A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) — A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) — Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com
Spacecrafts Could Use Urine As Fuel Source

Spacecrafts Could Use Urine As Fuel Source

Newsy (Apr. 15, 2014) — New research says the urea from urine could be recycled for fuel. Urea is filtered out of wastewater when making drinking water. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins