Featured Research

from universities, journals, and other organizations

Astrocytes as a novel target in Alzheimer’s disease

Date:
October 10, 2012
Source:
Expertsvar
Summary:
Alzheimer’s disease is a severe neurodegenerative disease that affects 45% of people over 85 years of age. Medical researchers have now identified astrocytes as a novel target for the development of future treatment strategies.

Alzheimer's disease is a severe neurodegenerative disease that affects 45% of people over 85 years of age. The research teams of Prof. Jin-Moo Lee at Washington University in Saint Louis, USA, and Prof. Milos Pekny at Sahlgrenska Academy in Gothenburg, Sweden, have identified astrocytes as a novel target for the development of future treatment strategies.

The results have just been published in the FASEB Journal.

Astrocytes are known as cells that control many functions of the healthy as well as diseased brain, including the control of regenerative responses.

In patients suffering from Alzheimer's disease, astrocytes in the vicinity of amyloid plaques and degenerating neurons become hyperactive.

Until now, many researchers considered this astrocyte hyperactivity in the brains of Alzheimer's disease patients as negative and contributing to the progression of this devastating disease.

The current study generated groundbreaking data with important implications. The US and Swedish research teams used a mouse model of Alzheimer's disease in which they genetically reduced astrocyte hyperactivity. They found that such mice developed more amyloid deposits and showed more pronounced signs of neurodegeneration than mice with normal response of astrocytes.

This suggests that astrocyte response to the disease process slows down the disease progression.

- We are truly exited about these findings. Now we need to understand the mechanism underlying the beneficial role of hyperactive astrocytes in Alzheimer's disease progression. Understanding this process on a molecular level should help us to design strategies for optimization of the astrocyte response, says Prof. Milos Pekny.

- We see that astrocyte hyperactivity in Alzheimer's disease brains is tightly connected to activation of microglia, the brain's own immune cells. This implies that the two cell types communicate to mediate a coordinated response to disease states, says Prof. Jin-Moo Lee.

This international collaborative team of neuroscientists is pursuing further studies to understand molecular mechanisms by which astrocytes prevent the deposition of amyloid plaques in Alzheimer's disease.


Story Source:

The above story is based on materials provided by Expertsvar. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. W. Kraft, X. Hu, H. Yoon, P. Yan, Q. Xiao, Y. Wang, S. C. Gil, J. Brown, U. Wilhelmsson, J. L. Restivo, J. R. Cirrito, D. M. Holtzman, J. Kim, M. Pekny, J.-M. Lee. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. The FASEB Journal, 2012; DOI: 10.1096/fj.12-208660

Cite This Page:

Expertsvar. "Astrocytes as a novel target in Alzheimer’s disease." ScienceDaily. ScienceDaily, 10 October 2012. <www.sciencedaily.com/releases/2012/10/121010084158.htm>.
Expertsvar. (2012, October 10). Astrocytes as a novel target in Alzheimer’s disease. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/10/121010084158.htm
Expertsvar. "Astrocytes as a novel target in Alzheimer’s disease." ScienceDaily. www.sciencedaily.com/releases/2012/10/121010084158.htm (accessed August 28, 2014).

Share This




More Mind & Brain News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins