Featured Research

from universities, journals, and other organizations

Detailed view of brain protein structure; Results may help improve drugs for neurological disorders

Date:
October 10, 2012
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
Researchers have published the first highly detailed description of how neurotensin, a neuropeptide hormone which modulates nerve cell activity in the brain, interacts with its receptor. Their results suggest that neuropeptide hormones use a novel binding mechanism to activate a class of receptors called G-protein coupled receptors.

NIH scientists used X-ray crystallography to produce this image of neurotensin (orange spheres), bound to the top of its receptor.
Credit: Courtesy of Dr. Reinhard Grisshammer, NINDS/NIH

Researchers have published the first highly detailed description of how neurotensin, a neuropeptide hormone which modulates nerve cell activity in the brain, interacts with its receptor. Their results suggest that neuropeptide hormones use a novel binding mechanism to activate a class of receptors called G-protein coupled receptors (GPCRs).

"The knowledge of how the peptide binds to its receptor should help scientists design better drugs," said Dr. Reinhard Grisshammer, a scientist at the NIH's National Institute of Neurological Disorders and Stroke (NINDS) and an author of the study published in Nature.

Binding of neurotensin initiates a series of reactions in nerve cells. Previous studies have shown that neurotensin may be involved in Parkinson's disease, schizophrenia, temperature regulation, pain, and cancer cell growth.

Dr. Grisshammer and his colleagues used X-ray crystallography to show what the receptor looks like in atomic detail when it is bound to neurotensin. Their results provide the most direct and detailed views describing this interaction which may change the way scientists develop drugs targeting similar neuropeptide receptors.

X-ray crystallography is a technique in which scientists shoot X-rays at crystallized molecules to determine a molecule's shape and structure. The X-rays change directions, or diffract, as they pass through the crystals before hitting a detector where they form a pattern that is used to calculate the atomic structure of the molecule. These structures guide the way scientists think about how proteins work.

Neurotensin receptors and other GPCRs belong to a large class of membrane proteins which are activated by a variety of molecules, called ligands. Previous X-ray crystallography studies showed that smaller ligands, such as adrenaline and retinal, bind in the middle of their respective GPCRs and well below the receptor's surface. In contrast, Dr. Grisshammer's group found that neurotensin binds to the outer part of its receptor, just at the receptor surface. These results suggest that neuropeptides activate GPCRs in a different way compared to the smaller ligands.

Forming well-diffracting neuropeptide-bound GPCR crystals is very difficult. Dr. Grisshammer and his colleagues spent many years obtaining the results on the neurotensin receptor. During that time Dr. Grisshammer started collaborating with a group led by Dr. Christopher Tate, Ph.D. at the MRC Laboratory of Molecular Biology, Cambridge, England. Dr. Tate's lab used recombinant gene technology to create a stable version of the neurotensin receptor which tightly binds neurotensin. Meanwhile Dr. Grisshammer's lab employed the latest methods to crystallize the receptor bound to a short version of neurotensin.

The results published today are the first X-ray crystallography studies showing how a neuropeptide agonist binds to neuropeptide GPCRs. Nonetheless, more work is needed to fully understand the detailed signaling mechanism of this GPCR, said Dr. Grisshammer.

This study was supported by NINDS; the National Institute of Diabetes and Digestive and Kidney Diseases; Protein Production Facility of the New York Consortium on Membrane Protein Structure, New York City; and the MRC Laboratory of Molecular Biology.


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jim F. White, Nicholas Noinaj, Yoko Shibata, James Love, Brian Kloss, Feng Xu, Jelena Gvozdenovic-Jeremic, Priyanka Shah, Joseph Shiloach, Christopher G. Tate, Reinhard Grisshammer. Structure of the agonist-bound neurotensin receptor. Nature, 2012; DOI: 10.1038/nature11558

Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "Detailed view of brain protein structure; Results may help improve drugs for neurological disorders." ScienceDaily. ScienceDaily, 10 October 2012. <www.sciencedaily.com/releases/2012/10/121010131438.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2012, October 10). Detailed view of brain protein structure; Results may help improve drugs for neurological disorders. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/10/121010131438.htm
NIH/National Institute of Neurological Disorders and Stroke. "Detailed view of brain protein structure; Results may help improve drugs for neurological disorders." ScienceDaily. www.sciencedaily.com/releases/2012/10/121010131438.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins