Featured Research

from universities, journals, and other organizations

Aggregation of proteins in cells may result in diseases

Date:
October 15, 2012
Source:
Aarhus University
Summary:
Changes in the structure of proteins can lead to various diseases, such as Alzheimer's, type 2 diabetes and corneal dystrophy. A research team from Denmark has now discovered how a particular protein can damage cells. These results may lead to the development of drugs to treat corneal dystrophy in the future.

Changes in the structure of proteins can lead to various diseases, such as Alzheimer's, type 2 diabetes and corneal dystrophy. A research team from Aarhus University has now discovered how a particular protein can damage cells. These results may lead to the development of drugs to treat corneal dystrophy in the future..

Related Articles


Many diseases are caused by proteins losing their natural three-dimensional structure and thus their function. In most cases, the damaged proteins are degraded by different systems in the cells, but in some cases, the proteins begin to aggregate and form very well-organised rope-like structures called fibrils. These structures have now been linked to many different diseases, such as Alzheimer's, Parkinson's, type 2 diabetes and corneal dystrophies (opaqueness in the cornea).

It has long been known that corneal dystrophy is caused by a mutation of a protein called TGFBIp in the cornea. This causes the protein to aggregate over a number of years, which finally makes the cornea opaque, eventually leading to blindness. Corneal dystrophy is hereditary, and there is currently no treatment for this disease. The only alternative is a corneal transplant, but even after a transplant, some patients experience a recurrence of the symptoms. It is therefore important to find a reason for this aggregation, and this is what the Aarhus researchers have just accomplished.

High amounts of TGFBIp protein are damaging

The research team studied the protein that causes corneal dystrophy, and they found that the mutation of the protein changes its stability. When the protein involved in corneal dystrophy is present in low amounts, the change from a protein with a natural structure to well-organised fibrils is a slow process, and it takes place via several different intermediate stages. In this case, the cell damage is minimal. However, when protein is present in larger quantities, the change from a protein with a natural structure to fibrils is very rapid and involves very few and well-defined intermediate stages. On the other hand, this leads to extensive cell damage.

With these studies, the researchers gained unique insight into how the amount of protein in solution can determine the mechanism underlying the formation of well-organised protein fibrils.

The results may explain why some diseases with a prevalence of fibrils result in cell death, while others do not. With this knowledge, it might be possible in the future to prevent this aggregation of damaging proteins by developing drugs for the treatment of corneal dystrophy.

The researchers behind the results, which have just been published in the international Journal of Biological Chemistry (JBC), are affiliated with the Danish National Research Foundation's Centre for Insoluble Protein Structures (inSPIN) located at the Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology and Genetics (MBG), Aarhus University, Denmark.


Story Source:

The above story is based on materials provided by Aarhus University. The original article was written by Lisbeth Heilesen. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Andreasen, S. B. Nielsen, K. Runager, G. Christiansen, N. C. Nielsen, J. J. Enghild, D. E. Otzen. Polymorphic Fibrillation of the Destabilized Fourth Fasciclin-1 Domain Mutant A546T of the Transforming Growth Factor--induced Protein (TGFBIp) Occurs through Multiple Pathways with Different Oligomeric Intermediates. Journal of Biological Chemistry, 2012; 287 (41): 34730 DOI: 10.1074/jbc.M112.379552

Cite This Page:

Aarhus University. "Aggregation of proteins in cells may result in diseases." ScienceDaily. ScienceDaily, 15 October 2012. <www.sciencedaily.com/releases/2012/10/121015112838.htm>.
Aarhus University. (2012, October 15). Aggregation of proteins in cells may result in diseases. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/10/121015112838.htm
Aarhus University. "Aggregation of proteins in cells may result in diseases." ScienceDaily. www.sciencedaily.com/releases/2012/10/121015112838.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins