Featured Research

from universities, journals, and other organizations

Neuroscientists find the molecular 'when' and 'where' of memory formation

Date:
October 15, 2012
Source:
New York University
Summary:
Neuroscientists have isolated the “when” and “where” of molecular activity that occurs in the formation of short-, intermediate-, and long-term memories. Their findings offer new insights into the molecular architecture of memory formation and, with it, a better road map for developing therapeutic interventions for related afflictions.

Neuroscientists have isolated the “when” and “where” of molecular activity that occurs in the formation of short-, intermediate-, and long-term memories.
Credit: iStockphoto/Guido Vrola

Neuroscientists from New York University and the University of California, Irvine have isolated the "when" and "where" of molecular activity that occurs in the formation of short-, intermediate-, and long-term memories. Their findings, which appear in the journal the Proceedings of the National Academy of Sciences, offer new insights into the molecular architecture of memory formation and, with it, a better roadmap for developing therapeutic interventions for related afflictions.

Related Articles


"Our findings provide a deeper understanding of how memories are created," explained the research team leader Thomas Carew, a professor in NYU's Center for Neural Science and dean of NYU's Faculty of Arts and Science. "Memory formation is not simply a matter of turning molecules on and off; rather, it results from a complex temporal and spatial relationship of molecular interaction and movement."

Neuroscientists have previously uncovered different aspects of molecular signaling relevant to the formation of memories. But less understood is the spatial relationship between molecules and when they are active during this process.

To address this question, the researchers studied the neurons in Aplysia californica, the California sea slug. Aplysia is a model organism that is quite powerful for this type of research because its neurons are 10 to 50 times larger than those of higher organisms, such as vertebrates, and it possesses a relatively small network of neurons -- characteristics that readily allow for the examination of molecular signaling during memory formation. Moreover, its coding mechanism for memories is highly conserved in evolution, and thus is similar to that of mammals, making it an appropriate model for understanding how this process works in humans.

The scientists focused their study on two molecules, MAPK and PKA, which earlier research has shown to be involved in many forms of memory and synaptic plasticity -- that is, changes in the brain that occur after neuronal interaction. But less understood was how and where these molecules interacted.

To explore this, the researchers subjected the sea slugs to sensitization training, which induces increased behavioral reflex responsiveness following mild tail shock, or in this study, mild activation of the nerve form the tail. They then examined the subsequent molecular activity of both MAPK and PKA. Both molecules have been shown to be involved in the formation of memory for sensitization, but the nature of their interaction is less clear.

What they found was MAPK and PKA coordinate their activity both spatially and temporally in the formation of memories. Specifically, in the formation of intermediate-term (i.e., hours) and long-term (i.e., days) memories, both MAPK and PKA activity occur, with MAPK spurring PKA action. By contrast, for short-term memories (i.e., less than 30 minutes), only PKA is active, with no involvement of MAPK.

The study's other co-authors were Xiaojing Ye, a postdoctoral fellow in NYU's Center for Neural Science, Andreea Marina, an undergraduate at UC Irvine at the time of the study. The research was conducted at NYU's Center for Neural Science and UC Irvine's Center for Neurobiology of Learning and Memory.

This work was supported by grants RO1 MH 041083 and RO1 MH 081151 from the National Institute of Mental Health, part of the National Institutes of Health, and a grant IOB-0444762 from the National Science Foundation.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaojing Ye, Andreea Marina, and Thomas J. Carew. Local synaptic integration of mitogen-activated protein kinase and protein kinase A signaling mediates intermediate-term synaptic facilitation in Aplysia. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1209956109

Cite This Page:

New York University. "Neuroscientists find the molecular 'when' and 'where' of memory formation." ScienceDaily. ScienceDaily, 15 October 2012. <www.sciencedaily.com/releases/2012/10/121015151155.htm>.
New York University. (2012, October 15). Neuroscientists find the molecular 'when' and 'where' of memory formation. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2012/10/121015151155.htm
New York University. "Neuroscientists find the molecular 'when' and 'where' of memory formation." ScienceDaily. www.sciencedaily.com/releases/2012/10/121015151155.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins