Featured Research

from universities, journals, and other organizations

Abnormal involuntary eye movements in 'lazy eye' disease amblyopia linked to changes in subcortical regions of the brain

Date:
October 16, 2012
Source:
IOS Press BV
Summary:
The neural mechanism underlying amblyopia, also called "lazy eye" is still not completely clear. A new study now reports abnormal eye movements of the lazy eye, which suggests that disturbed functioning of eye movement coordination between both eyes and not primarily the dysfunction of the visual cortex may be a cause of amblyopia.

Changes in activities of SC result in altered spatial distribution of FS occurrence. a-d: Model analysis of FS generation determined by SC activities under normal versus amblyopic viewing conditions.e-f: FS endpoint scatter plot of normal eye (a) and amblyopic eye (c) as measured in subjects. a-b: The activity strength distribution along with eccentricity under normal viewing condition (a) and amblyopic viewing condition (b). The size of the simulated SC activity map is up to 12-degree eccentricity, but only the eccentricity range within 3-degrees is shown here. The dot, dash dot and solid lines describe the excitatory activity level, the inhibitory activity level and the difference of both, respectively. The dashed lines represent the threshold for eliciting FSs. c-d: Simulated spatial distributions of the probability of FS occurrence as a function of endpoint eccentricity.
Credit: Image courtesy of IOS Press BV

The neural mechanism underlying amblyopia, also called "lazy eye" is still not completely clear. A new study now reports abnormal eye movements of the lazy eye, which suggests that disturbed functioning of eye movement coordination between both eyes and not primarily the dysfunction of the visual cortex may be a cause of amblyopia.

Related Articles


Amsterdam, NL, October 16, 2012 -- Little is known about oculomotor function in amblyopia, or "lazy eye," despite the special role of eye movements in vision. A group of scientists has discovered that abnormal visual processing and circuitry in the brain have an impact on fixational saccades (FSs), involuntary eye movements that occur during fixation and are important for the maintenance of vision. The results, which raise the question of whether the alterations in FS are the cause or the effect of amblyopia and have implications for amblyopia treatment, are available online in advance of publication in the November issue of Restorative Neurology and Neuroscience.

"Although FSs are of great functional significance in neural coding, visual perception, and visual task execution, their behavioral characteristics in visual and neurological disease have been rarely studied," says lead investigator Xue-Feng F. Shi, MD, PhD, of the Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, College of Clinical Ophthalmology, Tianjin Medical University, and the Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, China. "We carried out quantitative and detailed analysis of fixational saccades in amblyopia for the first time."

Investigators examined 28 patients with amblyopia and 28 age-matched control subjects. Using a high-speed eye-tracker, fixational eye movements of both eyes were recorded. A computerized analysis of eye-movement waveforms was developed to quantify the parameters of FSs, and a simulation model was used to explore the neural mechanism of changes in fixational saccadic performance of amblyopic eyes.

Amblyopic eyes showed fewer FSs than control eyes, but they had increased amplitudes and speed. Periods between movements were significantly longer in amblyopic eyes. FS was suppressed mainly for those with amplitudes smaller than 0.6 degrees, but was increased for those greater than 0.6 degrees. "We conclude that the change of amplitude distribution is a dominant alteration of FSs in amblyopia, while the change of other parameters is secondary. These findings should provide the necessary baseline information for future studies and should advance our understanding of the correlation between visual system impairment and eye-movement behavior," notes Dr. Shi. The simulation model suggests that an excitatory-inhibitory activity imbalance in the superior colliculus (SC) of the brain, an area involved with vision and eye movement, may explain these changes.

Dr. Shi explains that there are two possible interpretations of the study. "Altered FSs may be an effect of amblyopia, an attempt of the visual system to try to capture more information from a broader spatial domain to enhance contrast sensitivity, which is reduced in lazy eye. Or it may be the cause or a contributing factor to the original deficit, which may open up a new avenue for the research of the neural mechanisms of amblyopia that will be as different from the traditional research route as the pioneering work in visual cortex by Hubel and Wiesel (Nobel Laureates). Another issue of particular interest is whether amblyopia treatment and visual training can positively influence FS," he says. "To solve these questions will be a major step forward in our understanding of visual system and eye movement impairments which then provides a new starting point for innovative therapeutic approaches."


Story Source:

The above story is based on materials provided by IOS Press BV. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xue-feng F. Shi, Li-Min Xu, Yao Li, Ting Wang, Kan-xing Zhao, and Bernhard A. Sabel. Fixational Saccadic Eye Movements are Altered in Anisometropic Amblyopia. Restorative Neurology and Neuroscience, November 2012 DOI: 10.3233/RNN-2012-129000

Cite This Page:

IOS Press BV. "Abnormal involuntary eye movements in 'lazy eye' disease amblyopia linked to changes in subcortical regions of the brain." ScienceDaily. ScienceDaily, 16 October 2012. <www.sciencedaily.com/releases/2012/10/121016162854.htm>.
IOS Press BV. (2012, October 16). Abnormal involuntary eye movements in 'lazy eye' disease amblyopia linked to changes in subcortical regions of the brain. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2012/10/121016162854.htm
IOS Press BV. "Abnormal involuntary eye movements in 'lazy eye' disease amblyopia linked to changes in subcortical regions of the brain." ScienceDaily. www.sciencedaily.com/releases/2012/10/121016162854.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins