Featured Research

from universities, journals, and other organizations

New study brings a doubted exoplanet 'back from the dead'

Date:
October 25, 2012
Source:
NASA/Goddard Space Flight Center
Summary:
A second look at data from NASA's Hubble Space Telescope is reanimating the claim that the nearby star Fomalhaut hosts a massive exoplanet. The study suggests that the planet, named Fomalhaut b, is a rare and possibly unique object that is completely shrouded by dust.

This is an artist's impression of the exoplanet, Fomalhaut b, orbiting its sun, Fomalhaut.
Credit: ESA; Hubble, M. Kornmesser; and ESO, L. Calηada and L. L. Christensen

A second look at data from NASA's Hubble Space Telescope is reanimating the claim that the nearby star Fomalhaut hosts a massive exoplanet. The study suggests that the planet, named Fomalhaut b, is a rare and possibly unique object that is completely shrouded by dust.

Fomalhaut is the brightest star in the constellation Piscis Austrinus and lies 25 light-years away.

In November 2008, Hubble astronomers announced the exoplanet, named Fomalhaut b, as the first one ever directly imaged in visible light around another star. The object was imaged just inside a vast ring of debris surrounding but offset from the host star. The planet's location and mass -- no more than three times Jupiter's -- seemed just right for its gravity to explain the ring's appearance.

Recent studies have claimed that this planetary interpretation is incorrect. Based on the object's apparent motion and the lack of an infrared detection by NASA's Spitzer Space Telescope, they argue that the object is a short-lived dust cloud unrelated to any planet.

A new analysis, however, brings the planet conclusion back to life.

"Although our results seriously challenge the original discovery paper, they do so in a way that actually makes the object's interpretation much cleaner and leaves intact the core conclusion, that Fomalhaut b is indeed a massive planet," said Thayne Currie, an astronomer formerly at NASA's Goddard Space Flight Center in Greenbelt, Md., and now at the University of Toronto.

The discovery study reported that Fomalhaut b's brightness varied by about a factor of two and cited this as evidence that the planet was accreting gas. Follow-up studies then interpreted this variability as evidence that the object actually was a transient dust cloud instead.

In the new study, Currie and his team reanalyzed Hubble observations of the star from 2004 and 2006. They easily recovered the planet in observations taken at visible wavelengths near 600 and 800 nanometers, and made a new detection in violet light near 400 nanometers. In contrast to the earlier research, the team found that the planet remained at constant brightness.

The team attempted to detect Fomalhaut b in the infrared using the Subaru Telescope in Hawaii, but was unable to do so. The non-detections with Subaru and Spitzer imply that Fomalhaut b must have less than twice the mass of Jupiter.

Another contentious issue has been the object's orbit. If Fomalhaut b is responsible for the ring's offset and sharp interior edge, then it must follow an orbit aligned with the ring and must now be moving at its slowest speed. The speed implied by the original study appeared to be too fast. Additionally, some researchers argued that Fomalhaut b follows a tilted orbit that passes through the ring plane.

Using the Hubble data, Currie's team established that Fomalhaut b is moving with a speed and direction consistent with the original idea that the planet's gravity is modifying the ring.

"What we've seen from our analysis is that the object's minimum distance from the disk has hardly changed at all in two years, which is a good sign that it's in a nice ring-sculpting orbit," explained Timothy Rodigas, a graduate student in the University of Arizona and a member of the team.

Currie's team also addressed studies that interpret Fomalhaut b as a compact dust cloud not gravitationally bound to a planet. Near Fomalhaut's ring, orbital dynamics would spread out or completely dissipate such a cloud in as little as 60,000 years. The dust grains experience additional forces, which operate on much faster timescales, as they interact with the star's light.

"Given what we know about the behavior of dust and the environment where the planet is located, we think that we're seeing a planetary object that is completely embedded in dust rather than a free-floating dust cloud," said team member John Debes, an astronomer at the Space Telescope Science Institute in Baltimore, Md.

A paper describing the findings has been accepted for publication in The Astrophysical Journal Letters.

Because astronomers detect Fomalhaut b by the light of surrounding dust and not by light or heat emitted by its atmosphere, it no longer ranks as a "directly imaged exoplanet." But because it's the right mass and in the right place to sculpt the ring, Currie's team thinks it should be considered a "planet identified from direct imaging."

Fomalhaut was targeted with Hubble most recently in May by another team. Those observations are currently under scientific analysis and are expected to be published soon.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "New study brings a doubted exoplanet 'back from the dead'." ScienceDaily. ScienceDaily, 25 October 2012. <www.sciencedaily.com/releases/2012/10/121025174633.htm>.
NASA/Goddard Space Flight Center. (2012, October 25). New study brings a doubted exoplanet 'back from the dead'. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/10/121025174633.htm
NASA/Goddard Space Flight Center. "New study brings a doubted exoplanet 'back from the dead'." ScienceDaily. www.sciencedaily.com/releases/2012/10/121025174633.htm (accessed August 28, 2014).

Share This




More Space & Time News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) — Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) — The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins