Featured Research

from universities, journals, and other organizations

New options for ease and accuracy in extraction of rare cells or separating blood

Date:
October 26, 2012
Source:
University of Cincinnati
Summary:
Using something called "inertial microfluidics," researchers are able to continuously and selectively collect rare cells, such as circulating tumor cells, based on their size vs. other biomarkers. This could reduce analysis time and increase selectivity while reducing reliance on antibody-based testing in clinical tests.

This image shows the size-dependent extraction of particles. The fluorescent image indicates trapping of larger particles while smaller particles pass through.
Credit: Image courtesy of University of Cincinnati

Using something called "inertial microfluidics," University of Cincinnati researchers are able to continuously and selectively collect rare cells, such as circulating tumor cells, based on their size vs. other biomarkers. This could reduce analysis time and increase selectivity while reducing reliance on antibody-based testing in clinical tests.

At the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (microTAS) to be held Oct. 28-Nov. 1, in Okinawa, Japan, University of Cincinnati researchers will present four papers, including one detailing improvements in rare cell isolation and one detailing improvements, in terms of cost and time, of common blood tests.

Ian Papautsky, associate professor in UC's School of Electronic and Computing Systems (SECS), part of the College of Engineering and Applied Science, and a UC team are leading these research efforts.

In a paper titled "Continuous Rare Cell Extraction Using Self-Releasing Vortex in an Inertial Microfluidic Device" by Papautsky and co-authors Xiao Wang, UC doctoral student, and Jian Zhou, research associate, a new concept for separation of rare cells, such as prostate cancer cells or circulating tumor cells, using microfluidics, is detailed.

"Last year we showed we can selectively isolate prostate cancer cells, but only by running small sample volumes one at a time. Now we show that we can do this continuously," Papautsky said. "This is exciting because it allows for an entire blood draw to be processed, in continuous matter, in a shorter period of time."

These blood draws can be used to identify tumor cells for diagnostic or prognostic purposes. "Our approach is based purely on size. It doesn't rely on antibodies, which is important because not all cancer cells express antigens. So, if the cancer cells are, let's say, larger than 20 microns, we'll extract them," he explained.

The most common approach for looking for these circulating tumor cells is via a system that uses a selection using antibodies to detect antigens. "We could also use our device to prepare samples for systems that use antibody-based selection." This combined approach could potentially help reduce occurrence of false positives while significantly increasing the accuracy of the antibody-based tests.

Another area in which this device could be useful is in working with cell cultures. "If you have a mixture of multiple cells where some cells are small and other cells are big, we could separate these cell populations very easily," Papautsky explained. "Anytime you need to separate based on size, we can do it using inertial microfluidics."

The advantage of inertial microfluidics in cell separation is that it can be done easily and without cumbersome equipment. This research is leading to an entirely new generation of testing capabilities which particularly lend themselves to direct use in the field and in physicians' offices in just about any country and any economic setting.

In another paper, titled "Sorting of Blood in Spiral Microchannels" Papautsky and doctoral student Nivedita Nivedita demonstrate continuous sorting of blood utilizing inertial microfluidics via a simple passive microfluidic device. Papautsky's lab has been developing the concept of using inertia to manipulate cells and particles during the last few years. "It's truly different and innovative because these microfluidic devices are really low cost while offering very high throughput," said Papautsky.

The device is, essentially, a clear, plastic, flexible square that is relatively small in size, at about a half an inch across, but big in concept. "With this particular device we can take a drop of blood, put it in the input port in the center, and separate," Papautsky explained. The device contains four outlet ports which separate the blood into different streams, allowing the collection of outputs containing dilute plasma, red blood cells and white blood cells.

"There are a lot of clinical diagnostic tests that are based on blood," he said. One of the most common tests that are done in a hospital is the complete blood count (CBC). Through this test, a wide range of conditions like anemia, malaria or leukemia are diagnosed. "In all of these diagnostic tests, blood must be separated into its components, and that's what this device does," Papautsky explained. "So, instead of using a big centrifuge to do it, we can do it with this little device." Using the microfluidic device allows for a diagnosis in less time in a much easier fashion.

This quick, low-cost way of running a diagnostic test could potentially be used in a resource-limited setting. "One of the issues that I hear from my colleagues who work in these areas that do tests is that they have equipment," he said, "but don't always have personnel or stable power to operate them. So in places like India, Africa or Central America, our devices could be useful."

This work was supported by the DARPA Micro/Nano Fluidics Fundamentals Focus (MF3) Center at the University of California at Irvine.


Story Source:

The above story is based on materials provided by University of Cincinnati. The original article was written by Desirι Bennett. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "New options for ease and accuracy in extraction of rare cells or separating blood." ScienceDaily. ScienceDaily, 26 October 2012. <www.sciencedaily.com/releases/2012/10/121026125011.htm>.
University of Cincinnati. (2012, October 26). New options for ease and accuracy in extraction of rare cells or separating blood. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2012/10/121026125011.htm
University of Cincinnati. "New options for ease and accuracy in extraction of rare cells or separating blood." ScienceDaily. www.sciencedaily.com/releases/2012/10/121026125011.htm (accessed September 19, 2014).

Share This



More Health & Medicine News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) — As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) — Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
U.S. Food Makers Surpass Calorie-Cutting Pledge

U.S. Food Makers Surpass Calorie-Cutting Pledge

Newsy (Sep. 18, 2014) — Sixteen large food and beverage companies in the United States that committed to cut calories in their products far surpassed their target. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) — Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins