Featured Research

from universities, journals, and other organizations

Targeting drugs with hydrogels

Date:
November 1, 2012
Source:
National Institute for Materials Science
Summary:
Researchers in Japan have developed a technique which allows them to control and target drug delivery to specific sites of the body at specific times, thus reducing side effects and improving treatment dramatically.

Researchers in Japan have developed a technique which allows them to control and target drug delivery to specific sites of the body at specific times, thus reducing side effects and improving treatment dramatically.

Related Articles


The results were published recently in the journal Science and Technology of Advanced Materials.

Better control over the delivery of drugs to specific sites in the body at specific times would reduce unwanted side effects and improve medical treatment dramatically. 'Smart' polymers are promising materials for controlling drug delivery, since they change their properties in response to specific stimuli. However, they usually require continuous stimulation to maintain these changes. Now, researchers led by Takao Aoyagi at the MANA, National Institute for Materials Science, Japan, have developed an approach that could allow more subtle control and timing of drug delivery.

The new technique uses hydrogels, which are a type of 'smart' polymer made of water-soluble long-chain molecules. The team first showed that they could control the acidity inside a hydrogel by loading it with a compound called o-NBA. This releases protons, which increases acidity, when irradiated with UV light. When o-NBA-loaded hydrogel was irradiated, acidity increased inside; if only part of the gel was irradiated, acidity throughout increased gradually as protons diffused.

Aoyagi and his colleagues then loaded hydrogel with o-NBA and L-DOPA, a precursor of the brain chemical dopamine that is used in the treatment of Parkinson's disease. The change of acidity in the gel upon UV irradiation caused L-DOPA to be released because the acidity disrupted the interaction of L-DOPA with the molecules in the gel.

Irradiation with UV not only enhanced overall L-DOPA release from the hydrogel, but also caused an extra 'explosive' release five hours after irradiation. This allowed the drug release to be timed, as well as triggered, in a controlled way.

Being able to control the release of drugs from hydrogels by triggering a change in acidity could help to design programmable drug delivery techniques that offer improved targeting of treatment.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Prapatsorn Techawanitchai, Naokazu Idota, Koichiro Uto, Mitsuhiro Ebara, Takao Aoyagi. A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction. Science and Technology of Advanced Materials, 2012; 13 (6): 064202 DOI: 10.1088/1468-6996/13/6/064202

Cite This Page:

National Institute for Materials Science. "Targeting drugs with hydrogels." ScienceDaily. ScienceDaily, 1 November 2012. <www.sciencedaily.com/releases/2012/11/121101120826.htm>.
National Institute for Materials Science. (2012, November 1). Targeting drugs with hydrogels. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/11/121101120826.htm
National Institute for Materials Science. "Targeting drugs with hydrogels." ScienceDaily. www.sciencedaily.com/releases/2012/11/121101120826.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins