Featured Research

from universities, journals, and other organizations

Simulations improve predictability of aneurysm development

Date:
November 2, 2012
Source:
University of Twente
Summary:
Brain aneurysms occur in about six percent of the population. They are dilated sections of blood vessels, which can deteriorate over time until the blood vessel wall ruptures, resulting in a hemorrhage. This causes a loss of mental functions and severe headaches. Hemorrhages of this kind can even be life threatening. The treatment of such patients involves complex medical decision-making. Models developed by a Dutch researcher can be of great use in this regard. She uses information obtained from brain scans, in combination with fluid dynamics models, to predict flows and forces in the affected part of the brain.

Three-dimensional reconstruction of a section of a blood vessel in the brain, showing a highly developed aneurysm. Details of the geometry of the vessel’s wall are obtained by processing data obtained by 3DRA (3D Rotational Angiography). The blood flows from the relatively high pressure area on the left (shown in red) to the lower pressure area on the right (shown in blue). Three streamlines illustrate the complexity of blood flow patterns in and around the aneurysm. Reliable predictions can be obtained in just a few hours, using parallel calculation methods.
Credit: Image courtesy of University of Twente

Brain aneurysms occur in about six percent of the population. They are dilated sections of blood vessels, which can deteriorate over time until the blood vessel wall ruptures, resulting in a haemorrhage. This causes a loss of mental functions and severe headaches. Haemorrhages of this kind can even be life threatening. The treatment of such patients involves complex medical decision-making. Models developed by Julia Mikhal can be of great use in this regard. She uses information obtained from brain scans, in combination with fluid dynamics models, to predict flows and forces in the affected part of the brain.

Patient specific

Using the immersed boundary method, Dr Mikhal can calculate fluid flows and the forces exerted on blood vessel walls. This allows her to perform generic model calculations and to obtain a detailed picture of individual patients' specific situations, as a function of space and time. Flow calculations reveal which parts of the vessel wall are at greater or lesser risk of further deterioration. Without such information, it is difficult to make accurate predictions about the future development of the aneurysm. One of the insights produced by these calculations is that the larger the aneurysm, the greater the fluctuations in flow behaviour. These fluctuations are probably a reliable measure of gradually increasing risk levels.

Julia Mikhal's work will enable the entire process to be automated, starting from the collection of a patient's medical data right through to the fluid-mechanical analysis of the flows and forces involved. This generates predictions that have a reliable margin of error, which greatly assists medical specialists in the process of decision making. The key factors in preventing the situation from worsening are speed, reliability, and a rational consideration of the alternatives.

Julia Mikhal conducted her research in Prof. Bernard Geurts' Multiscale Modelling and Simulation group. This group is attached to two University of Twente research institutes: the MIRA Institute for Biomedical Engineering and Technical Medicine, and the MESA+ Institute for Nanotechnology.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Cite This Page:

University of Twente. "Simulations improve predictability of aneurysm development." ScienceDaily. ScienceDaily, 2 November 2012. <www.sciencedaily.com/releases/2012/11/121102084502.htm>.
University of Twente. (2012, November 2). Simulations improve predictability of aneurysm development. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2012/11/121102084502.htm
University of Twente. "Simulations improve predictability of aneurysm development." ScienceDaily. www.sciencedaily.com/releases/2012/11/121102084502.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins