Featured Research

from universities, journals, and other organizations

How brain activity changes when anesthesia induces unconsciousness

Date:
November 5, 2012
Source:
Massachusetts General Hospital
Summary:
Investigators have identified for the first time a pattern of brain activity that appears to signal exactly when patients lose consciousness under general anesthesia.

Investigators at Massachusetts General Hospital (MGH) and Massachusetts Institute of Technology (MIT) have identified for the first time a pattern of brain activity that appears to signal exactly when patients lose consciousness under general anesthesia. Although their study only involved use of one anesthetic drug, propofol, the researchers believe that their findings will apply to other forms of general anesthesia and could lead to better ways of monitoring anesthetized patients.

Related Articles


"How anesthetics produce unconsciousness is a major scientific mystery, so this finding is very important because it suggests a specific mechanism for how propofol, one of the most widely used anesthetic drugs, works," says Patrick Purdon, PhD, senior author of the report appearing in PNAS Plus. "The pattern that we found marks a new brain state in which neurons in different areas become inactivated at different times, impairing communication between different brain regions." Purdon is an Instructor in Anesthesia in the MGH Department of Anesthesia, Critical Care and Pain Medicine at Harvard Medical School.

The current hypothesis on the nature of unconsciousness is that it represents a loss of communication functions throughout the brain. Animal studies of the effects of general anesthesia cannot accurately determine when consciousness is lost. The current study measured the activity of both single neurons and neuronal networks in three patients who previously had electrodes implanted into their brain to help diagnose epilepsy. At the outset of surgical procedures to remove the electrodes, patients were asked to press a button whenever they heard a tone, which was generated every four seconds. When a patient failed to respond to two tones in a row, the five-second period defined by those tones was identified as the point when consciousness was lost.

Measurement of the activity of single neurons showed a drop in overall activity but not until up to 30 seconds after consciousness had been lost. But the time when consciousness was lost did coincide with a significant change in the overall structure of brain activity. While electrical activity in the conscious brain appears to be disorganized with no apparent regular patterns, at the point when study participants lost consciousness, their brain activity began to show regular oscillations between states of activation and deactivation.

"These deactivated or silent periods of brain activity occur at different times in different brain regions, so communication between regions is interrupted" says Laura Lewis, co-lead author of the report. "It's as if one brain region is in Boston and the other is in Singapore -- they can't make phone calls to each other because one is asleep when the other is awake." While this slow oscillation pattern has been previously observed in humans who are asleep or under ansethesia, this is the first study to record neuronal activity during the transition to unconsciousness, so it is the first to match the onset of this pattern with the loss of consciousness, she adds. Lewis is a graduate student in the MIT Department of Brain and Cognitive Sciences, working with Purdon and with Emery Brown, MD, PhD, the Warren M. Zapol Professor of Anaesthesia at MGH and Harvard Medical School and professor in the MIT Department of Brain and Cognitive Sciences.

Purdon explains, "Previously, the brain wave patterns and brain physiology indicating unconsciousness were not clear, so anesthesiologists did not have a principled way to monitor the brain during general anesthesia. Without this knowledge, existing anesthetic brain monitors are highly inaccurate. Now that we have identified a specific physiological marker associated with unconsciousness, we can develop systems that accurately indicate patients' level of consciousness and help anesthesiologists determine the best drug dosage to use. Having that information could both prevent the rare instances when patients regain consciousness during surgery and avoid anesthesia overdoses."


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. D. Lewis, V. S. Weiner, E. A. Mukamel, J. A. Donoghue, E. N. Eskandar, J. R. Madsen, W. S. Anderson, L. R. Hochberg, S. S. Cash, E. N. Brown, P. L. Purdon. PNAS Plus: Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1210907109

Cite This Page:

Massachusetts General Hospital. "How brain activity changes when anesthesia induces unconsciousness." ScienceDaily. ScienceDaily, 5 November 2012. <www.sciencedaily.com/releases/2012/11/121105151338.htm>.
Massachusetts General Hospital. (2012, November 5). How brain activity changes when anesthesia induces unconsciousness. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2012/11/121105151338.htm
Massachusetts General Hospital. "How brain activity changes when anesthesia induces unconsciousness." ScienceDaily. www.sciencedaily.com/releases/2012/11/121105151338.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former NFL Players Donate Brains to Science

Former NFL Players Donate Brains to Science

Reuters - US Online Video (Mar. 3, 2015) Super Bowl champions Sidney Rice and Steve Weatherford donate their brains, post-mortem, to scientific research into repetitive brain trauma. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Alzheimer's Protein Plaque Found In 20-Year-Olds

Alzheimer's Protein Plaque Found In 20-Year-Olds

Newsy (Mar. 3, 2015) Researchers found an abnormal protein associated with Alzheimer&apos;s disease in the brains of 20-year-olds. Video provided by Newsy
Powered by NewsLook.com
This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins