Featured Research

from universities, journals, and other organizations

Computer memory could increase fivefold from advances in self-assembling polymers

Date:
November 13, 2012
Source:
University of Texas at Austin
Summary:
The researchers' technique, which relies on a process known as directed-self assembly, is being given a real-world test run in collaboration with one of the world's leading innovators in disk drives.

Comparison of the block copolymers self-assembling with and without the new top coat. In both cases the self-assembly took place under very simple conditions: 210C for 1 min on a hot plate open to air.
Credit: AAAS

The storage capacity of hard disk drives could increase by a factor of five thanks to processes developed by chemists and engineers at The University of Texas at Austin.

Related Articles


The researchers' technique, which relies on self-organizing substances known as block copolymers, was described this week in an article in Science. It's also being given a real-world test run in collaboration with HGST, one of the world's leading innovators in disk drives.

"In the last few decades there's been a steady, exponential increase in the amount of information that can be stored on memory devices, but things have now reached a point where we're running up against physical limits," said C. Grant Willson, professor of chemistry and biochemistry in the College of Natural Sciences and the Rashid Engineering Regents Chair in the Cockrell School of Engineering.

With current production methods, zeroes and ones are written as magnetic dots on a continuous metal surface. The closer together the dots are, the more information can be stored in the same area. But that tactic has been pretty much maxed out. The dots have now gotten so close together that any further increase in proximity would cause them to be affected by the magnetic fields of their neighboring dots and become unstable.

"The industry is now at about a terabit of information per square inch," said Willson, who co-authored the paper with chemical engineering professor Christopher Ellison and a team of graduate and undergraduate students. "If we moved the dots much closer together with the current method, they would begin to flip spontaneously now and then, and the archival properties of hard disk drives would be lost. Then you're in a world of trouble. Can you imagine if one day your bank account info just changed spontaneously?"

There's a quirk in the physics, however. If the dots are isolated from one another, with no magnetic material between them, they can be pushed closer together without destabilization.

This is where block copolymers come in. At room temperature, coated on a disk surface, they don't look like much. But if they're designed in the right way, and given the right prod, they'll self-assemble into highly regular patterns of dots or lines. If the surface onto which they're coated already has some guideposts etched into it, the dots or lines will form into precisely the patterns needed for a hard disk drive.

This process, which is called directed self-assembly (DSA), was pioneered by engineers at the University of Wisconsin and the Massachusetts Institute of Technology.

When Willson, Ellison and their students began working with directed self-assembly, the best anyone in the field had done was to get the dots small enough to double the storage density of disk drives. The challenge has been to shrink the dots further and to find processing methods that are compatible with high-throughput production.

The team has made great progress on a number of fronts. They've synthesized block copolymers that self-assemble into the smallest dots in the world. In some cases they form into the right, tight patterns in less than a minute, which is also a record.

"I am kind of amazed that our students have been able to do what they've done," said Willson. "When we started, for instance, I was hoping that we could get the processing time under 48 hours. We're now down to about 30 seconds. I'm not even sure how it is possible to do it that fast. It doesn't seem reasonable, but once in a while you get lucky."

Most significantly, the team has designed a special top coat that goes over the block copolymers while they are self-assembling.

"I've been fortunate enough to be involved in the experimental work of the top coat project from its inception all the way to our final results," said Leon Dean, a senior chemical engineering major and one of the authors on the Science paper. "We've had to develop an innovative spin-on top coat for neutralizing the surface energy at the top interface of a block copolymer film."

This top coat allows the polymers to achieve the right orientation relative to the plane of the surface simply by heating.

"The patterns of super small dots can now self-assemble in vertical or perpendicular patterns at smaller dimensions than ever before," said Thomas Albrecht, manager of patterned media technology at HGST. "That makes them easier to etch into the surface of a master plate for nanoimprinting, which is exactly what we need to make patterned media for higher capacity disk drives."

Willson, Ellison and their students are currently working with HGST to see whether these advances can be adapted to their products and integrated into amainstream manufacturing process.

Other industry collaborators are Nissan Chemical Company, which partially funded the research, and Molecular Imprints, an Austin-based company co-founded by Willson that is a pioneer in nanoimprint lithography.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. M. Bates, T. Seshimo, M. J. Maher, W. J. Durand, J. D. Cushen, L. M. Dean, G. Blachut, C. J. Ellison, C. G. Willson. Polarity-Switching Top Coats Enable Orientation of Sub-10-nm Block Copolymer Domains. Science, 2012; 338 (6108): 775 DOI: 10.1126/science.1226046

Cite This Page:

University of Texas at Austin. "Computer memory could increase fivefold from advances in self-assembling polymers." ScienceDaily. ScienceDaily, 13 November 2012. <www.sciencedaily.com/releases/2012/11/121113122234.htm>.
University of Texas at Austin. (2012, November 13). Computer memory could increase fivefold from advances in self-assembling polymers. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/11/121113122234.htm
University of Texas at Austin. "Computer memory could increase fivefold from advances in self-assembling polymers." ScienceDaily. www.sciencedaily.com/releases/2012/11/121113122234.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins