Featured Research

from universities, journals, and other organizations

Enzyme inhibition protects against Huntington's disease damage in two animal models

Date:
November 29, 2012
Source:
Massachusetts General Hospital
Summary:
Treatment with a novel agent that inhibits the activity of SIRT2, an enzyme that regulates many important cellular functions, reduced neurological damage, slowed the loss of motor function and extended survival in two animal models of Huntington's disease.

Treatment with a novel agent that inhibits the activity of SIRT2, an enzyme that regulates many important cellular functions, reduced neurological damage, slowed the loss of motor function and extended survival in two animal models of Huntington's disease. The study led by Massachusetts General Hospital (MGH) researchers will appear in the Dec. 27 issue of Cell Reports and is receiving advance online release.

"I believe that the drug efficacy demonstrated in two distinct genetic HD mouse models is quite unique and highly encouraging," says Aleksey Kazantsev, PhD, of the MassGeneral Institute for Neurodegenerative Disorders, senior author of the study. "The outcome suggests that designing stronger SIRT2 inhibitors is a valid strategy for developing drugs to slow the progression of HD, something that currently does not exist."

Earlier studies by Kazantsev's group and others showed that inhibiting SIRT2 (sirtuin-2 deacetylase) protected against neuronal damage in cellular and animal models of HD and Parkinson's disease -- both of which are characterized by the buildup of abnormal proteins in the brain -- and in other neurodegenerative disorders. The current study was designed to evaluate in two mouse models of HD use of a new, brain-permeable SIRT2 inhibitor called AK-7, first identified by members of the MGH team in 2011. One model called R6/2 is characterized by robust progression and severity of neurological symptoms. The other, called 140 CAG Htt knock-in, is genetically closer to the human disease. In both models, the mutated huntingtin gene contains extended repeats of the nucleotide triplet CAG, leading to development of HD-like motor symptoms and the same type of brain damage seen in the devastating neurological disorder.

Animals from both strains received two daily injections of AK-7 at one of three dose levels -- 10, 20 or 30 mg/kg -- beginning at the age of 4 weeks and continuing for up to 14 weeks. Among the R6/2 animals, those treated with AK-7 retained significantly more motor function than did untreated animals and had less shrinkage of brain structures affected by HD and smaller aggregates of the mutant huntingtin protein characteristic of the disorder. Treated animals in this model, which usually die prematurely, lived 13 percent longer than untreated R6/2 mice.

In the experiments with the 140 CAG Htt knock-in model, treated animals maintained activity levels similar to those of normal mice for several months, while untreated mice showed a rapid decline in motor activity. In that model, 14 weeks of treatment reduced mutant huntingtin aggregates in the most affected area of the brain by more than 50 percent, compared with untreated animals from the same strain.

"The golden rule in the HD field for identifying compounds that could work in patients is showing efficacy in a robust HD model like R6/2 and in the more genetically accurate to human disease 140 CAG Htt knock-in model," says Kazantsev, an associate professor of Neurology at Harvard Medical School. "The next essential and critical step will be testing additional, structurally diverse SIRT2 inhibitors in HD mice, and we are preparing to test one that is 10 times more potent than AK-7. If and when that compound and others also show efficacy, that will give us definitive proof of the therapeutic potential of SIRT2 inhibition for HD."

Vanita Chopra, PhD, MGH Neurology, is lead author of the Cell Reports paper.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vanita Chopra, Luisa Quinti, Jinho Kim, Lorraine Vollor, K.Lakshmi Narayanan, Christina Edgerly, PatriciaM. Cipicchio, MollyA. Lauver, SooHyuk Choi, RichardB. Silverman, RobertJ. Ferrante, Steven Hersch, AlekseyG. Kazantsev. The Sirtuin 2 Inhibitor AK-7 Is Neuroprotective in Huntington’s Disease Mouse Models. Cell Reports, 2012; DOI: 10.1016/j.celrep.2012.11.001

Cite This Page:

Massachusetts General Hospital. "Enzyme inhibition protects against Huntington's disease damage in two animal models." ScienceDaily. ScienceDaily, 29 November 2012. <www.sciencedaily.com/releases/2012/11/121129130502.htm>.
Massachusetts General Hospital. (2012, November 29). Enzyme inhibition protects against Huntington's disease damage in two animal models. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/11/121129130502.htm
Massachusetts General Hospital. "Enzyme inhibition protects against Huntington's disease damage in two animal models." ScienceDaily. www.sciencedaily.com/releases/2012/11/121129130502.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins