Featured Research

from universities, journals, and other organizations

Faster, safer method for producing stem cells

Date:
December 4, 2012
Source:
Salk Institute for Biological Studies
Summary:
A new method for generating stem cells from mature cells promises to boost stem cell production in the laboratory, helping to remove a barrier to regenerative medicine therapies that would replace damaged or unhealthy body tissues.

These are endothelial cells derived by indirect lineage conversion from human fibroblasts (skin cells). Cell nuclei are in blue; proteins that are hallmarks of endothelial cells are green and red.
Credit: Image: Courtesy of the Salk Institute for Biological Studies

A new method for generating stem cells from mature cells promises to boost stem cell production in the laboratory, helping to remove a barrier to regenerative medicine therapies that would replace damaged or unhealthy body tissues.

The technique, developed by researchers at the Salk Institute for Biological Studies, allows for the unlimited production of stem cells and their derivatives as well as reduces production time by more than half, from nearly two months to two weeks.

"One of the barriers that needs to be overcome before stem cell therapies can be widely adopted is the difficulty of producing enough cells quickly enough for acute clinical application," says Ignacio Sancho-Martinez, one of the first authors of the paper and a postdoctoral researcher in the laboratory of Juan Carlos Izpisua Belmonte, the Roger Guillemin Chair at the Salk Institute.

They and their colleagues, including Fred H. Gage, professor in Salk's Laboratory of Genetics, have published a new method for converting cells in this week's Nature Methods.

Stem cells are valued for their "pluripotency," the ability to become nearly any cell in the body. Stem cells for research and clinical uses are derived in two ways, either directly from cells young enough to still be pluripotent, or from mature cells that have been "reprogrammed" to be pluripotent.

The first kind are called "embryonic stem cells," (ESCs) even though the term is a misnomer. They are actually taken from blastocysts, the hollow bundle of cells approximately the size of a tip of a pin that is formed by a fertilized egg after five days of cell division. After a blastocyst implants in the uterus, the embryo stage begins.

Aside from the well-known ethical controversies, ESCs have a less discussed problem: Tissues grown from ESCs may trigger immune reactions when they are transplanted into patients.

In order to overcome both ethical and medical concerns, scientists learned how to coax mature cells (called "somatic cells") that had differentiated into particular types of tissue back to their pluripotent state. These so-called "induced pluripotent stem cells," or iPSCs, set off whole new rounds of research, including a third way to get desired cell types.

As it turns out, iPSCs have their own problems. They take a long time to create in the lab, in a highly inefficient process that can take up to two months to complete. First, somatic cells must be reprogrammed to iPSCs, which takes considerable time and effort. Then, the iPSCs have to be differentiated into specific cell lineages prior to therapeutic application. Far worse, they can sometimes develop into tumors, called teratomas, which can be cancerous.

Knowing this, scientists wondered if it might not be necessary to go all the way back to the blank slate of a pluripotent stem cell. Key to this idea is that pluripotent stem cells do not immediately grow into particular cells. They go through intermediate progenitor phases where they become "multipotent," and can only develop into cell types within a certain cellular lineage. While a pluripotent cell can become nearly any cell in the body, a multipotent blood cell, for example, can become red or white blood cells or platelets, but not distant lineages such as neurons.

Thus, in order to avoid the potential problems of working with iPSCs, scientists developed the technique of "direct lineage conversion." Unlike the familiar scenario, in which a pluripotent cell would divide and generate all different cell types of an adult individual, in direct lineage conversion one somatic cell is turned into just one other cell type, thus, for example, one skin cell becomes one muscle cell, but nothing else.

While this technique is effective, the Salk team and their colleagues wondered if there might be a modification that could be both more efficient and safer.

"Beyond the obvious issue of safety, the biggest consideration when thinking about stem cells for clinical use is productivity," says Salk post doctoral researcher Leo Kurian, a first co-author on the paper.

The team developed a new technique, which they dubbed "indirect lineage conversion" (ILC). In ILC, as explained in detail in Nature Methods, somatic cells are pushed back to an earlier state suitable for further specification into progenitor cells.

ILC has the potential to generate multiple lineages once cells are transferred to the team's specially developed chemical environment. Most importantly, ILC saves time and reduces the risk of teratomas by not requiring iPSC generation. Instead, somatic cells are directed to become the progenitor cells of particular lineages. "We don't push them to zero, we just push them a bit back," Sancho-Martinez says.

Using ILC, the group reprogrammed human fibroblasts (skin cells) to become angioblast-like cells, the progenitors of vascular cells. These new cells could not only proliferate, but also further differentiate into endothelial and smooth muscle vascular lineages. When implanted in mice, these cells integrated into the animals' existing vasculature.

"One of the long-term hopes for stem cell research is exemplified by this study, where stem cells would self-assemble into 3D structures and then integrate into existing tissues," says Juan Carlos Izpisua Belmonte.

While such clinical use may be years away, this new method has several advantages over current techniques, he explains. It is safer, since it does not seem to produce tumors or other undesirable genetic changes, and results in much greater yield than other methods. Most important, it is faster, and this is part of what makes it not only more productive, but less risky.

"Generally it can take up to two months to create iPSCs and their differentiated derivatives, which increases the chances for mutations to take place," says Emmanuel Nivet, the third of the first co-authors. "Our method takes only 15 days, so we've substantially decreased the chances for spontaneous mutations to take place."

Other researchers on the study were: Aitor Aguirre, Krystal Moon, Caroline Pendaries, Cecile Volle-Challier, Francoise Bono, Jean-Marc Herbert, Julian Pulecio, Yun Xia, Mo Li, Nuria Montserrat, Sergio Ruiz, Ilir Dubova, Concepcion Rodriguez, Ahmet M. Denli, Francesca S. Boscolo, Rathi D. Thiagarajan, Jeanne F. Loring and Louise C. Laurent.

The work was supported by: the California Institute for Regenerative Medicine; the F.M. Kirby Foundation; National Institutes of Health; the Hartwell Foundation; the Millipore Foundation; the Esther O'Keeffe Charitable Trust Foundation; Fundacion Cellex; the G. Harold and Leila Y. Mathers Charitable Foundation; The Leona M. and Harry B. Helmsley Charitable Trust, Sanofi; and the Ministerio de Economia y Competitividad.


Story Source:

The above story is based on materials provided by Salk Institute for Biological Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leo Kurian, Ignacio Sancho-Martinez, Emmanuel Nivet, Aitor Aguirre, Krystal Moon, Caroline Pendaries, Cecile Volle-Challier, Francoise Bono, Jean-Marc Herbert, Julian Pulecio, Yun Xia, Mo Li, Nuria Montserrat, Sergio Ruiz, Ilir Dubova, Concepcion Rodriguez, Ahmet M Denli, Francesca S Boscolo, Rathi D Thiagarajan, Fred H Gage, Jeanne F Loring, Louise C Laurent, Juan Carlos Izpisua Belmonte. Conversion of human fibroblasts to angioblast-like progenitor cells. Nature Methods, 2012; DOI: 10.1038/nmeth.2255

Cite This Page:

Salk Institute for Biological Studies. "Faster, safer method for producing stem cells." ScienceDaily. ScienceDaily, 4 December 2012. <www.sciencedaily.com/releases/2012/12/121204111919.htm>.
Salk Institute for Biological Studies. (2012, December 4). Faster, safer method for producing stem cells. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/12/121204111919.htm
Salk Institute for Biological Studies. "Faster, safer method for producing stem cells." ScienceDaily. www.sciencedaily.com/releases/2012/12/121204111919.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins