Featured Research

from universities, journals, and other organizations

Best of both worlds: Hybrid approach sheds light on crystal structure solution

Date:
December 11, 2012
Source:
Northwestern University
Summary:
Understanding the arrangement of atoms in a solid is vital to materials research -- but the problem can be difficult to solve in many important situations. Now, by combining the work of two different scientific camps, researchers have created an algorithm that makes crystal structure solution more automated and reliable.

With traditional crystal structure solution techniques, light atoms such as the hydrogen present in MgNH (above) often remain largely invisible, their positions unknown. A new method developed by Northwestern University researchers illuminates such elusive atoms with first-principles-based structural optimization.
Credit: Art credit: Robert Hodgin

Understanding the arrangement of atoms in a solid -- one of solids' fundamental properties -- is vital to advanced materials research. For decades, two camps of researchers have been working to develop methods to understand these so-called crystal structures. "Solution" methods, championed by experimental researchers, draw on data from diffraction experiments, while "prediction" methods of computational materials scientists bypass experimental data altogether.

While progress has been made, computational scientists still cannot make crystal structure predictions routinely. Now, drawing on both prediction and solution methods, Northwestern University researchers have developed a new code to solve crystal structures automatically and in cases where traditional experimental methods struggle.

Key to the research was integrating evidence about solids' symmetry -- the symmetrical arrangement of atoms within the crystal structure -- into a promising computational model.

"We took the best of both worlds," said Chris Wolverton, professor of materials science and engineering at Northwestern's McCormick School of Engineering and expert in computational materials science. "Computational materials scientists had developed a great optimization algorithm, but it failed to take into account some important facts gathered by experimentalists. By simply integrating that information into the algorithm, we can have a much fuller understanding of crystal structures."

The resulting algorithm could allow researchers to understand the structures of new compounds for applications ranging from hydrogen storage to lithium-ion batteries.

A paper describing the research was published November 25 in the journal Nature Materials.

While both computational and experimental researchers have made strides in determining the crystal structure of materials, their efforts have some limitations. Diffraction experiments are labor-intensive and have high potential for human error, while most existing computational approaches neglect potentially valuable experimental input.

When computational and experimental research is combined, however, those limitations can be overcome, the researchers found.

In their research, the Northwestern authors seized onto an important fact: that while the precise atomic arrangements for a given solid may be unknown, experiments have revealed the symmetries present in tens of thousands of known compounds. This database of information is useful in solving the structures of new compounds.

The researchers were able to revise a useful model -- known as the genetic algorithm, which mimics the process of biological evolution -- to take those data into account.

In the paper, the researchers used this technique to analyze the atomic structure of four technologically relevant solids whose crystal structure has been debated by scholars -- magnesium imide, ammonia borane, lithium peroxide, and high-pressure silane -- and demonstrated how their method would solve their atomic structures.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bryce Meredig, C. Wolverton. A hybrid computational–experimental approach for automated crystal structure solution. Nature Materials, 2012; DOI: 10.1038/nmat3490

Cite This Page:

Northwestern University. "Best of both worlds: Hybrid approach sheds light on crystal structure solution." ScienceDaily. ScienceDaily, 11 December 2012. <www.sciencedaily.com/releases/2012/12/121211130316.htm>.
Northwestern University. (2012, December 11). Best of both worlds: Hybrid approach sheds light on crystal structure solution. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/12/121211130316.htm
Northwestern University. "Best of both worlds: Hybrid approach sheds light on crystal structure solution." ScienceDaily. www.sciencedaily.com/releases/2012/12/121211130316.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com
Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins