Featured Research

from universities, journals, and other organizations

Grains gang up to bear brunt of missile and meteorite impacts

Date:
December 11, 2012
Source:
Duke University
Summary:
High-speed video of projectiles slamming into a bed of disks has given scientists a new microscopic picture of the way a meteorite or missile transfers the energy of its impact to sand and dirt grains.

The way a meteorite or missile transfers the energy of its impact to sand and dirt grains is far more complex than scientists thought.
Credit: Impact illustration courtesy of NASA

High-speed video of projectiles slamming into a bed of disks has given scientists a new microscopic picture of the way a meteorite or missile transfers the energy of its impact to sand and dirt grains.

Related Articles


The transfer is jerky, not smooth. "It was surprising just how unsmooth the slow-down of the intruding object was," Duke physicist Robert Behringer said. His team describes their new videos and impact analysis in the Dec. 7 Physical Review Letters. The research may change the way scientists model meteorite and missile impacts and their effects.

Scientists previously assumed that the slowing down would be smooth and that any sound wave would travel through a granular material in a regular, uniform pattern, similar to the way noise from a clap of the hands diffuses evenly in all directions through the air. But using high-speed video, Behringer, his graduate student Abram Clark and Lou Kondic of the New Jersey Institute of Technology have shown a very different behavior for the sound wave and grains during a collision.

In the study, supported by the Defense Threat Reduction Agency, the team shot bronze disks into a narrow bed of photoelastic grains and used an ultrafast camera to track the collision energy as it shifted from the disk to the beads. The footage shows that the bronze disk loses most of its energy in intense, sporadic acoustic pulses along networks of grains, or force chains, in the bed of beads.

"This phenomenon was so hard to observe before because of how fast the force chains travel," Behringer said. The standard movie rate is about 30 frames per second. To capture the path of energy down the force chains, the scientists had to use a camera that could capture 40,000 frames per second, 1300 times faster than a normal video, because the sound pulses move at such high speeds.

The scientists shot the intruding disks into the photoelastic grains at speeds up to 6.5 meters per second, about 15 miles per hour. On impact, the force chains in the disks started moving the energy away from the intruding object, dumping it down deep in the bed of disks like the drainpipes of a septic system carrying water and waste away from a house, Behringer said.

The speed of the bronze disk was well under sonic or super-sonic speed, which could make the patterns of energy transfer substantially different, the team noted in the paper. "For supersonic speeds, it's kind of like the car chases that happen in markets in movies. People can't get out of the way fast enough. Similarly the pulses wouldn't clear the chain networks and the forces would back up rather than get carried away from the intruder," Behringer said.

Studying the impacts at sonic and supersonic speeds, however, is a set of experiments that requires different grain particles, Behringer said, adding it's one the team may try soon. He also explained that once a missile or meteor drops below sonic speeds, the grains absorbing its impact would carry the energy and momentum away jerkily and sporadically, just as the team's new microscopic picture shows.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Ashley Yeager. Note: Materials may be edited for content and length.


Journal Reference:

  1. Clark, A., Kondic, L., and Behringer, R. Particle Scale Dynamics in Granular Impact. Physical Review Letters, 2012 DOI: 10.1103/Physics.5.137

Cite This Page:

Duke University. "Grains gang up to bear brunt of missile and meteorite impacts." ScienceDaily. ScienceDaily, 11 December 2012. <www.sciencedaily.com/releases/2012/12/121211145236.htm>.
Duke University. (2012, December 11). Grains gang up to bear brunt of missile and meteorite impacts. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2012/12/121211145236.htm
Duke University. "Grains gang up to bear brunt of missile and meteorite impacts." ScienceDaily. www.sciencedaily.com/releases/2012/12/121211145236.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Universe Could Be Full Of Tatooine Sunsets

The Universe Could Be Full Of Tatooine Sunsets

Newsy (Mar. 30, 2015) University of Utah researchers say mathematical simulations show small, rocky planets, like Tatooine from "Star Wars," can form in dual-star systems. Video provided by Newsy
Powered by NewsLook.com
What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Raw: Astronauts Arrive at ISS for 1-Year Mission

Raw: Astronauts Arrive at ISS for 1-Year Mission

AP (Mar. 28, 2015) The capsule carrying a Russian and an American who are to spend a year away from Earth docked Saturday with the International Space Station. (March 28) Video provided by AP
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins